Client:

Estuary View Enterprises 2020 Ltd.

Project:

Bessborough SHD Development

Report:

Services Infrastructure Report

Document Control Sheet

Client:	Estuary View Enterprises 2020 Ltd.			
Project Title: Bessborough SHD Development				
Document Title: Services Infrastructure Report				
File Name: 21207-JBB-PH1-XX-RP-C-01003				

Table of Contents (incl. Y/N)	List of Tables (incl. Y/N)	List of Figures (incl. Y/N)	Pages of Text (No.)	Appendices (No.)
Υ	Υ	Υ	17	12

Document Re	vision			Document Verification			
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
06/08/2021	P01	S3	DOB	RS	TF	TF	N/A
21/02/2022	P02	S3	DOB	RS	TF	TF	N/A
21/03/2022	P03	S3	DOB	RS	TF	TF	N/A

Table of Contents

INTRODUCTION	4
Scope of the Report	4
Site Location	
Proposed Development Brief	4
WASTEWATER COLLECTION & DISPOSAL	
Existing Wastewater Network	6
Pre-Connection Enquiry Stage	6
Design Acceptance Stage	6
Loading Calculations	7
STORMWATER COLLECTION & DISPOSAL	9
Existing Hydrology	9
Existing Stormwater Network	11
Greenfield Runoff Rate	11
Proposed Development Surface Water Management System	11
Conveyance of Surface Water Outflow to Final Discharge Location	16
WATER SUPPLY	17
Existing Watermain Network	17
Pre-Connection Enquiry Stage	17
Design Acceptance Stage	17
Loading Calculations	17
	Scope of the Report Site Location Proposed Development Brief WASTEWATER COLLECTION & DISPOSAL Existing Wastewater Network Pre-Connection Enquiry Stage Design Acceptance Stage Loading Calculations STORMWATER COLLECTION & DISPOSAL Existing Hydrology Existing Stormwater Network Greenfield Runoff Rate Proposed Development Surface Water Management System Conveyance of Surface Water Outflow to Final Discharge Location WATER SUPPLY Existing Watermain Network Pre-Connection Enquiry Stage Design Acceptance Stage

Appendices

Appendix 1:	Proposed Site Layout Plan
Appendix 2:	Cork City Council - Existing Wastewater Network
Appendix 3:	As-Built Local Drainage Network
Appendix 4:	Irish Water - Confirmation of Feasibility & Statement of Design Acceptance
Appendix 5:	Foul Sewer – MicroDrainage Calculations
Appendix 6:	Priority Geotechnical Ltd. – Ground Investigations
Appendix 7:	Cork City Council – Existing Stormwater Network
Appendix 8:	HR Wallingford – Greenfield Runoff Estimation
Appendix 9:	Cork City Council Correspondence
Appendix 10	: Surface Water - MicroDrainage Calculations
Appendix 11	: Attenuation Estimates, Storage Tank Sizing
Appendix 12	: Cork City Council - Existing watermain Records

List of Figures

5
5
9
10
10
14

List of Tables

Table 2-1: Foul Sewer Size/Gradient Criteria	7
Table 2-2: Foul Flow Calculations for Residential Development	7
Table 2-3: Foul Flow Calculations for Commercial Development	8
Table 3-1: HR Wallingford Design Value Outputs	11
Table 3-2: Surface Areas	13
Table 3-3: Summary of Attenuation Requirements and Proposals	15
Table 3-4: Pollution Hazard Indices for Different Land Uses (Source: CIRIA C753)	15
Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters (Source: CIRIA C753)	15
Table 4-1: Water Demand for Residential Development	18
Table 4-2: Water Demand for Commercial development	18

SECTION 1: INTRODUCTION

1.1 Scope of the Report

This Services Infrastructure Report outlines the proposed means of servicing the development with wastewater collection and disposal, stormwater management and disposal and water supply infrastructure. A Flood Risk Assessment is provided with this submission under a separate cover. Roads and traffic issues are dealt with separately by MHL Consulting Engineers on behalf of the Applicant and their submission should be consulted for such details.

The following should be read in conjunction with the engineering drawings which illustrate the servicing proposals and with the submissions by other members of the Applicant's design team.

1.2 Site Location

The proposed development is located at Phase 1- 'The Meadows', Bessborough, Ballinure, Blackrock, Cork, on a circa 2.29-hectare site, with a developable area of 1.53-hectares, see Figure 1.1. This proposed development will form Phase 1 of a larger development on a circa 16.59-hectare site, see Figure 1.2 for outline phasing proposals.

The Passage West Greenway forms the eastern boundary of the proposed development site, and the South Ring Road (N40) is located approximately 200m from the southern boundary of the proposed development. The western and northern boundaries of the Phase 1 site are formed by the buildings, outbuildings, roads and open spaces of the overall Bessborough complex. The site slopes gently from north to south, with ground levels falling from approximately 14.50 m OD to 11.25 m OD across the site.

1.3 Proposed Development Brief

This report is prepared in support of a Strategic Housing Development (SHD) planning application by Estuary View Enterprises 2020 Ltd.

The development will consist of the construction of a residential development of 280 no. residential apartment units with supporting tenant amenity facilities, café, crèche, and all ancillary site development works. The proposed development includes 280 no. apartments to be provided as follows: Block A (6 no. studio apartments, 14 no. 1-bedroom, 34 no. 2-bedroom & 1 no. 3-bedroom over 1-6 storeys), Block B (37 no. 1-bedroom & 49 no. 2-bedroom over 6-10 storeys), Block C (31 no. 1-bedroom, 36 no. 2-bedroom & 6 no. 3-bedroom over 5-9 storeys) and Block D (30 no. 1-bedroom, 31 no. 2-bedroom & 5 no. 3-bedroom over 6-7 storeys).

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas.

The proposed development provides for outdoor amenity areas, landscaping, under-podium and street car parking, bicycle parking, bin stores, 2 no. substations one of which is single storey free standing, a single storey carpark access building, public lighting, roof mounted solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road.

Figure 1-1: Location of Proposed Development

Figure 1-2: Phasing of Proposed Development

SECTION 2: WASTEWATER COLLECTION & DISPOSAL

2.1 Existing Wastewater Network

Cork City Council / Irish Water drainage records show an existing 375/450mmØ foul sewer located to the west of the Phase 3 lands which runs north to south before discharging to the Bessborough Wastewater Pumping Station (WWPS). From the WWPS a 350mmØ rising main heads east crossing through the greenfield area in the ownership of the applicant before turning north along the Passage West Greenway, see Appendix 2.

A feasibility study of the local area has revealed that there is an existing a 150mmØ foul sewer in the road adjacent to the western boundary of the Phase 1 site which runs north to south before turning in a westerly direction and connecting to the WWPS described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

2.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) issued a Confirmation of Feasibility (COF) stating that the site can be serviced by its wastewater infrastructure network. This COF is included in Appendix 4.

IW have advised that the proposed connection should be made directly to the WWPS, via a new inlet sewer. The WWPS is almost at design loading capacity. However, Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development and subsequent phases of this development. This upgrade project is scheduled to be completed by Q4 2022 and the proposed connection could be completed as soon as possibly practicable after this date.

2.3 Design Acceptance Stage

The proposed designs were progressed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

The wastewater collection within the development will be via a network of gravity sewers. The wastewater flows will be collected and will be conveyed in in a westerly direction, from the south-western boundary of the proposed development site and will connect directly to the WWPS. A legal wayleave is in place across the Bessborough lands immediately to the west of the proposed development site to facilitate this connection.

The final connection from the western edge of the lands to the existing WWPS will be undertaken using directional-drilling techniques to ensure that the existing western boundary wall to the lands will remain undisturbed during construction.

The wastewater collection system is designed and will be constructed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure to ensure self-cleansing velocities will be achieved on all pipe runs. The pipes proposed as part of this design have been sized in accordance with Table 2.1 below, an extract from IW-CDS-5030-03 (Revision 2 2020).

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework. The gravity wastewater sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 5 of this report. The foul sewer layout plans are attached on Drawing No's. 21207-JBB-PH1-XX-DR-C-04000 & 04001.

No. of Dwellings	Pipe Diameter	Minimum Gradient
2 to 9	150mm (or 225mm)	1:60
10 to 20		1:150
21 to 210		1:200
211 to 250		1:150
250 to 330		1:100
331 to 450		1:300
451 to 565	300mm	1:200
566 to 655		1:150
656 to 830		1:100

Table 2-1: Foul Sewer Size/Gradient Criteria

2.4 Loading Calculations

The design flows are calculated using the Irish Water Code of Practice for Wastewater Infrastructure Appendix B which is summarised in tables 2.2 and 2.3 below.

Use	No. of Units	Occupancy Rate	Population (P)	Loading (G) (I/day/person)	Daily Loading (PxG) (I/day)	Daily Loading (I/s)	
Residential	280	2.7/ Unit	756	150	113,400		
		la filtration	(I) 100/ (COD Amaga	adiv D. Table 2.4)	44.240		
	Infiltration (I) 10% (COP Appendix B – Table 2.4) 11,340 Dry Weather Flow (PG +I) 124,740						
	Residential Peaking Factor (Pf _{Dom}) (COP Appendix B – Table 2.5) 6						
	Design Foul Flow [(Pf _{Dom} x PG + I] 691,740 8.006						
Mi	Misconnection Allowance (SW) 3% (COP Appendix B - Section 2.2.10) 0.350						
		8.356					

Table 2-2: Foul Flow Calculations for Residential Development

Use	Floor Area (m²)		Occupancy Rate	Population (P)	Loading (G) (I/day/person)	Daily Loading (PxG) (I/day)	Daily Loading (I/s)
Creche	320		4	42	50	2,100	
			1 per 20m ²	4	50	200	
Café	89		1 per 5m ²	18	12	216	
Communal Workspace	166		14	14	100	1,400	
Lounge	180		31	31	15	465	
Gym	191		1 per 5m ²	38	50	1,900	
		Total				6,281	
	Total (Based on 12 Hour Day)				on 12 Hour Day)	3,141	
	Infiltration (I) 10% (COP Appendix B – Table 2.4) 314						
	Dry Weather Flow (I/s) PG +I 3,455						
	Commercial Peaking Factor (Pf _{Dom, Ind}) (COP Appendix B – Table 2.7) 4.5						
	Design Foul Flow (Pf _{Dom, Ind} x PG) + I (I/s)					14,449	0.168
	Misconnection Allowance (SW) 2% (COP Appendix B – Table 2.10)						0.233
	Design Flow (I/s)						0.401

Table 2-3: Foul Flow Calculations for Commercial Development

The combined residential and commercial design flow is 8.8l/s. This figure has been proportionally applied as a base flow to the heads of the wastewater sewer runs within the MicroDrainage design model, see Appendix 5 for the results.

SECTION 3: STORMWATER COLLECTION & DISPOSAL

3.1 Existing Hydrology

The proposed development site does not contain any mapped watercourse. The nearest watercourse to the proposed development site is the Douglas Estuary which is located approximately 260m to the south of the site. The Douglas Estuary flows in an easterly direction and discharges to transitional water body Lough Mahon to the south of the site. The main hydrological features associated with the site are presented in Figure 3.1 below.

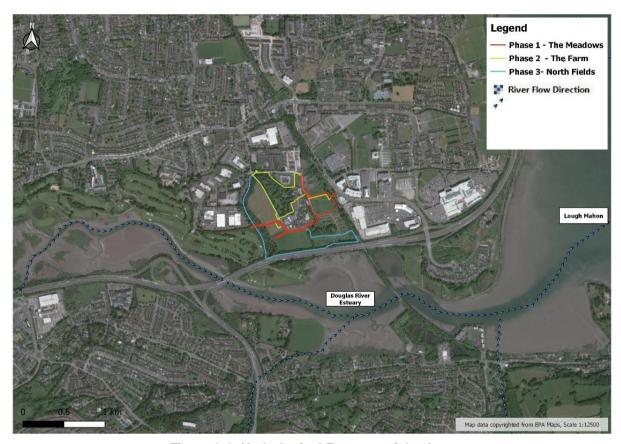


Figure 3-1: Hydrological Features of the Area

A geological desk study was conducted to gain an initial understanding of the existing ground conditions. The below Figure 3.2 is an extract from the Geological Survey of Ireland (GSI), where the soil permeability at the site is categorised as 'Moderate'. Further to this the groundwater vulnerability is categorised as 'High', see Figure 3.3. Groundwater vulnerability of an area is determined by the permeability and thickness of the subsoils overlying the groundwater, and the type of recharge sources (diffuse or point source). Therefore, areas where the infiltrating water and contaminants move faster from land to groundwater with high permeability are more vulnerable. Both sources of information would suggest that the site should have reasonable rates of permeability.

A ground investigation was undertaken by Priority Geotechnical Ltd. in January 2022 to establish subsurface conditions at the proposed project site. An infiltration test was conducted in one of the boreholes (BH05), see Appendix 6. The results were inconclusive as there was no drop in water level after 60 minutes and it is thought this result is unlikely to be an accurate representation of the existing ground conditions considering the GIS data above. Infiltration testing in accordance with BRE 365 will be conducted in due course as part of later detailed design. For now, conservative assumptions have been made, to ensure a robust design, and there will be no reduction in runoff volumes applied for the various SuDS measures.

However, it has been assumed that the first flush, 5mm, of rainfall can be infiltrated to ground in specific areas designated for interception purposes, which is explained in greater detail below.



Figure 3-2: Soil Permeability

Figure 3-3: Groundwater Vulnerability

3.2 Existing Stormwater Network

Cork City Council drainage records indicate there is an existing 1350mmØ trunk storm sewer located approximately 400m to the west of the Phase 1 site, outside the boundary of the lands, which runs in a north-south direction before crossing under the South Ring Road (N40) and discharging to the Douglas Estuary, see Appendix 7.

A feasibility study of the local area has revealed that there is an existing 450mmØ storm sewer in the road adjacent to the western boundary of the Phase 1 site (increasing downstream to a 750mmØ), which runs north to south before turning in a westerly direction and connecting to the 1350mmØ storm sewer described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

Pending further investigation and confirmation of the capacity of the 450mmØ pipe the proposal is to connect to the larger 750mmØ further downstream.

3.3 Greenfield Runoff Rate

The total site area for Phase 1 is 1.53ha. The greenfield runoff rate has been estimated using the HR Wallingford Greenfield runoff estimation online tool (report attached in Appendix 8). The online tool calculated a Qbar figure of 12.61 l/s (equivalent to 8.24 l/sec/ha). A summary of the design values output by the HR Wallingford Greenfield runoff estimation online tool is shown below:

Design Criteria	Value
Site Area (ha)	1.53
Soil Type	4
SPR	0.47
SAAR (mm)	1106
1 year factor	0.85
30-year factor	1.65
100-year factor	1.95

Table 3-1: HR Wallingford Design Value Outputs

Given the proximity of the site to the final outfall to the Douglas Estuary, the controlled outflow from the development has been set to the Q100 figure (the flow from the site in its greenfield condition in a 100-year storm event). This approach was proposed to Cork City Council Drainage Department and they were satisfied with the approach. See correspondence from Cork City Council in Appendix 9.

The growth factor to be applied when calculating Q100 from QBAR is 1.95 giving an upper limit to the discharge from the site at 24.6 l/sec. This is the value that will be used in later detailed design as the upper limit of surface water discharge from the development.

3.4 Proposed Development Surface Water Management System

The proposed surface water management system will, as far as is feasible, be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS).

The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimise the impact of urbanisation by replicating the runoff characteristics of a greenfield site. The criteria provide a consistent approach to addressing both rate and volume of runoff as well as ensuring the environment is protected from pollution that is washed off roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (In discussion with Cork City Council there is no requirement for long term storage)

3.4.1 Layout of the Proposed Network

The proposed surface water network will include a storm drainage pipe network, attenuation storage structures and several SuDS features which will aid the reduction of runoff volumes by slowing surface water flows, providing the opportunity for evapotranspiration, and providing the opportunity for infiltration to ground. Both the interception and attenuation storage requirements of GDSDS will be sufficiently met.

An assessment of the potential SuDS measures that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753 as guidance. The following SuDS features have been identified as applicable and will be provided within the proposed scheme:

- Green Roofs: will be provided throughout the site, on flat roofs, where possible. The green roof will be an extensive type with sedum planting at the surface with a drainage layer beneath. The drainage layer will convey flows to discharge locations. It is not proposed to restrict the discharges from the roofs. Where possible discharges from roofs will be tied into planters or permeable paving substrata via diffusers.
- Permeable Paving: will be provided for all paved areas, excluding the access road, the car park ramp and the pedestrian link corridor. Permeable paving will be a Type B as per SuDS Manual, CIRIA 753, a combination of infiltration and piped drainage.
- Tree Pits/Bioretention Planters: will be provided in every feasible location where there is a proposed tree or planter. The tree pits will contain engineered soil-filled tree boxes with drainage pipes beneath to link trees together and tie in with the proposed surface water sewer. The bioretention planters will consist of a shallow landscaped depression at the surface with a drainage layer beneath.
- StormTech Attenuation Tank: will be provided at the natural low point, at the south of the site for final storage of runoff volumes before discharging to the existing surface water network at a controlled rate.
- Permavoid Geocellular Units: will be provided at the base of the raised podium build up, which will
 provide storage and conveyance of surface water volumes. The raised podium will consist of
 impermeable surfaces and permeable surface (i.e., tree pits/bioretention planters).

The SuDS features will be designed to work in sequence thereby creating a treatment train. The proposed SuDS layout is shown on see Drawing No. 21207-JBB-PH1-XX-DR-C-04003 and the overall drainage arrangement is shown on Drawing No. 21207-JBB-PH1-XX-DR-C-04001, both included with this submission.

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework The gravity surface water sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 10 of this report.

The contributing surface areas of the development have been split up and tabulated below:

Area Type	Units (ha)
Total Site Area	1.53
Roof Area (Blocks A, B, C & D) (Partially Green)	0.50 (0.34 Green)
Raised Carpark Podium (Partially Green)	0.23 (0.11 Green)
Permeable Paving	0.17
Tree Pits/Bioretention Planters	0.25
Impermeable Area	0.54
Open Space Without Formal Drainage	0.12
Total Drained Area	1.41

Table 3-2: Surface Areas

3.4.2 Interception Storage

In accordance with the requirements of GDSGS, at least 5mm, and preferably 10mm, of interception storage should be provided on site, where runoff to the receiving water can be prevented. Despite the infiltration test results we are confident that the existing ground will be able to disperse some runoff via infiltration. Further infiltration testing will be conducted in due course to confirm this assumption.

In the case of this development the total drained area is 1.41ha (14,100m²) as per Table 3.2 above. This results in a required interception storage volume of 70.50m³ (14,100 X 0.005) The proposed interception storage will be provided by green roofs, permeable paving, tree pits and bioretention areas.

Green roofs are proposed for each of residential blocks. These areas cover a total area of 3,400m². The build-up in the green roof system will provide a minimum of 5mm of interception storage per 1m², allowing for a total interception storage volume of 17.00m³.

Permeable surfaces including permeable paving, tree pits and bioretention planters are proposed throughout the development, for a total area of 4,200m². The drainage pipe within the gravel bed for these areas will be set at 50mm above the bed formation giving (assumed 30% voids) interception stage equivalent to 15mm storage depth. Total interception volume provided in the permeable paving equals 63.00m³.

The proposed StormTech attenuation tank has a surface area of 299m². Interception storage will be provided within the base of the tanks for a depth of 260mm depth of stone below the StormTech Chambers. Assuming the tanks have a void ratio of 43% (which is conservative), the total interception storage volume provided is 33.43m³

The overall interception storage volume provided is therefore 113.43m³ which represents approximately 8mm of interception storage which is above the required minimum provision as detailed above.

3.4.3 Attenuation Storage

The proposed rate of surface water discharge from the development will be limited to that of the greenfield runoff for a 100-year storm event, as described in Section 4.2. Attenuation will be provided by StormTech attenuation chambers which will cater for the 100-year storm event with a 10% climate change allowance added. The proposed surface water network has been split into two catchments, A and B, see Figure 3.4.

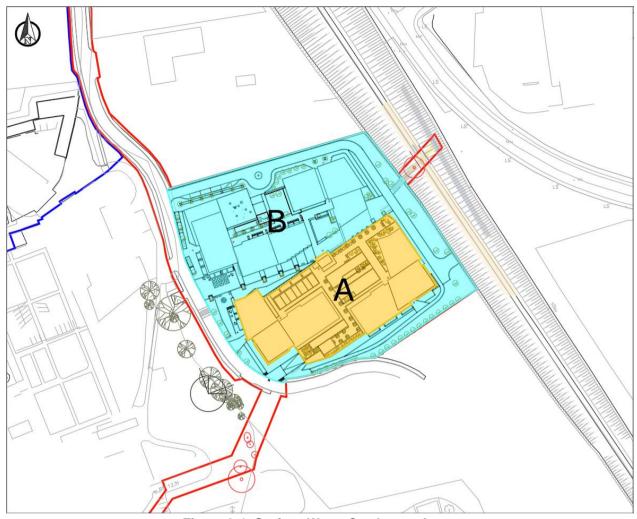


Figure 3-4: Surface Water Catchment Areas

It is proposed to use a geocellular attenuation system such as Polypipe's Permavoid Modular Cell 85 system (or similar approved), in the base of the podium for Catchment A. The Permavoid system provides at least 92% voids, which allow for conveyance and storage across the system. Based on a surface area of 2152m², Permavoid Modular Cell 85 system can provide 168m³ storage volume, in the geocellular units alone. Storage will also be available in the drainage stone above the geocellular units. There will be flow control devices installed at the invert level of the drainage system on the podium.

StormTech attenuation chambers are proposed for Catchment B. The restricted flows from the podium (Catchment A) will tie in upstream of the StormTech attenuation chambers.

The various SuDS components being proposed as part of the development will provide some attenuation, reduce flow rates and will disperse surface water via evapotranspiration and infiltration. However, at this stage of the design process, and to ensure a robust design, we are designing for the worst case and have not assumed a reduction in runoff volume from the various SuDS features and permeable surfaces in the required attenuation storage calculations. This will be revisited closer to construction stage, subject to a granted planning permission, to reduce the required attenuation storage volume if possible.

Preliminary attenuation volume calculations, based on the above criteria, are summarised in Table 3.3. (See Appendix 11 for detailed calculations)

Ref.	Catchment Area (ha)	Q100 (l/s)	Max. Discharge Rate (I/s)	Required Storage Volume 100yr +10% C.C. (m³)	Provided Attenuation Volume (m³)	Attenuation Storage Type
Α	0.48	7.72	7.72	162	168	Permavoid Modular Cell 85
В	1.05	16.88	24.60	355	360	StormTech Chambers

Table 3-3: Summary of Attenuation Requirements and Proposals

3.4.4 Water Quality

The proposed development is residential and therefore is considered a low-level pollution hazard. Surface water runoff will be directed to the SuDS features as mentioned above and will therefore benefit from their pollutant removal qualities. However, to ensure water quality standards are met, we are proposing a hydrocarbon interceptor upstream of the StormTech attenuation tank (Catchment B). This catchment includes the drainage of the access road which has the potential to contaminate surface water runoff via oil spills etc. from vehicles.

Simple Index Approach

The effectiveness of the chosen SuDS components to achieve water quality can be assessed using the 'simple index approach' as described in CIRIA C753.

The simple index approach designates risk indices to the various areas of development to determine their possible pollutant contribution. Similarly, the SuDS features are designated mitigation indices and if the mitigation indices are larger than the risk indices the water quality objectives are considered satisfied.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Driveways, car parks, low traffic roads	Low	0.5	0.4	0.4

Table 3-4: Pollution Hazard Indices for Different Land Uses (Source: CIRIA C753)

As can be seen in Table 3.5 below the total mitigation potential of the SuDS features far outweigh the contamination risks. Secondary (or further) stages in the treatment train are assigned 50% of the stated treatment indices value.

SuDS Component	TSS	Metals	Hydrocarbons
Permeable paving	0.7	0.6	0.6
Bioretention/Tree pits	0.8	0.8	0.8
Petrol Interceptor	0.4	0.4	0.4

Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters (Source: CIRIA C753)

3.4.5 Amenity and Biodiversity

Meeting amenity and biodiversity standards is all about creating attractive, pleasant, and liveable urban areas for both people and for nature.

The proposed SuDS features within this development will not only be aesthetically pleasing, but they will also assist the creation of liveable habitats for nature by retaining rainfall at the source. The final details of these features will be drawn-up in consultation with the landscape design and ecological consultants on the design team.

3.5 Conveyance of Surface Water Outflow to Final Discharge Location

A new 225mmØ surface water outfall pipe will convey the restricted flows from the site in a westerly direction across the overall Bessborough site connecting to the existing 750mmØ surface water sewer upstream of its connection to the existing 1350mmØ surface water pipe which in turn discharges to the Douglas Estuary further to the south.

A legal wayleave is in place across the Bessborough lands immediately to the west of the Phase 1 development to facilitate this connection.

The controlled discharge from the proposed development (a maximum of 24.8 l/sec) will be minimal in the context of the capacity of the existing 750mm and 1350mm pipes and given that this controlled outflow matches existing greenfield runoff from the site in a 100-year storm event these flows will not create a significant increase in the flow to the estuary.

The proposed route of this sewer is shown on Drawing No. 21207-JBB-PH1-XX-DR-C-04007.

SECTION 4: WATER SUPPLY

4.1 Existing Watermain Network

Cork City Council watermain records show there is an existing 150mmØ watermain in the roadway adjacent to the western boundary of the Phase 1 site. There is also an existing 1200mmØ trunk watermain running through the greenfield area in the ownership of the Applicant to the south of development site, see Appendix 12.

4.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) have issued a Confirmation of Feasibility (COF) that the site can be serviced by its water infrastructure network. This COF is included in Appendix 4.

IW have advised that the connection is to be made to the existing 150mmØ ductile iron watermain in the roadway adjacent to the western boundary of the Phase 1 site.

4.3 Design Acceptance Stage

The proposed designs for water supply infrastructure within the development were progressed in accordance with Irish Water's Code of Practice for Water Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

To serve the development a 40mmØ watermain will be connected to the existing 150mmØ ductile iron watermain in the roadway adjacent to the western boundary of the site. This new connection will feed a coldwater storage tank that will supply boosted potable water to each apartment and commercial unit and supply a sprinkler system. A bulk water meter will be provided at the connection to the site. The supply arrangements will be carried out to the requirements of Irish Water.

A second and separate connection will be made to the existing 150mmØ ductile iron watermain for the purposes of fire-fighting water supply. A fire-main and fire hydrants will be provided such that each building will be within 46m of a hydrant and these hydrants will be fully accessible to the fire service. Apartment buildings will be subject to Fire Safety Certificate applications and the provision of appropriate water supply for firefighting will be addressed in these applications.

Preliminary water supply layout plans are shown on Drawing No. 21207-JBB-PH1-XX-DR-C-03001.

The water supply system is designed and will be constructed in accordance with Irish Water's Code of Practice for Water Infrastructure

4.4 Loading Calculations

Water demand for the development is determined in accordance with Irish Water Code of Practice for Water Infrastructure.

Per-capita consumption = 150 litres/person/day

Average day / peak week demand (ADPWD) = 1.25 x ADDD

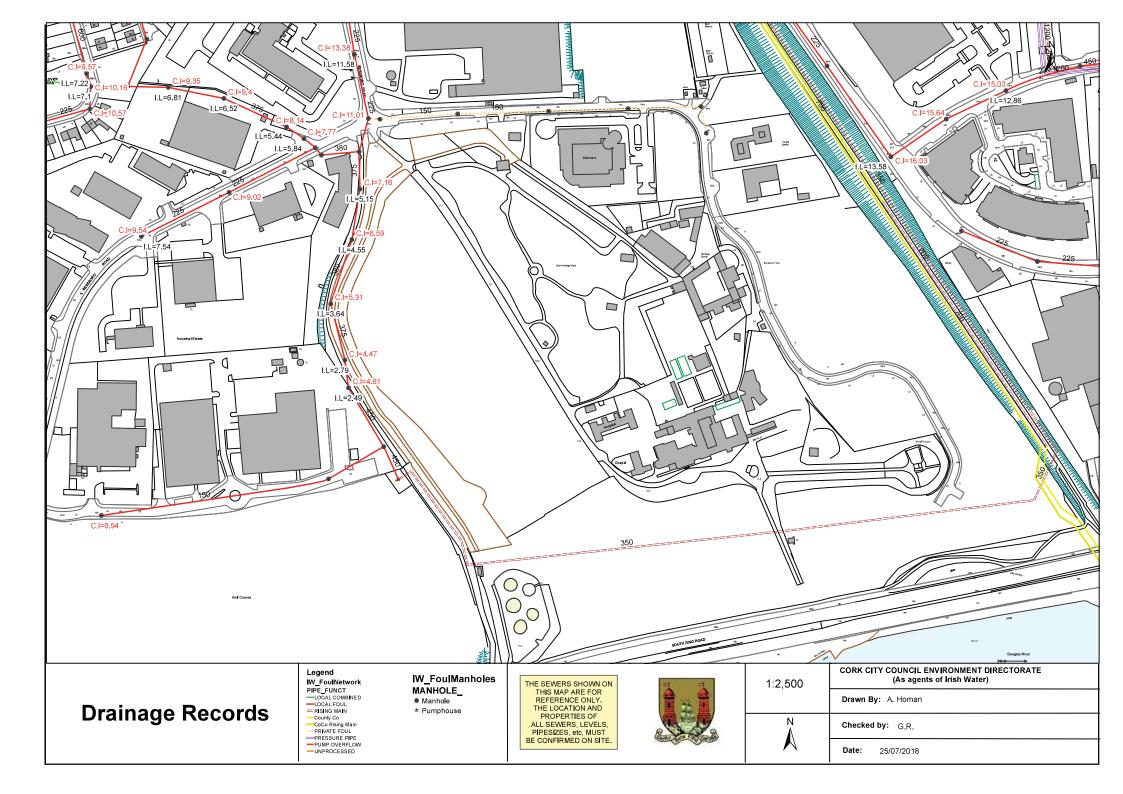
Peak Water Demand = 5.00 x ADPWD

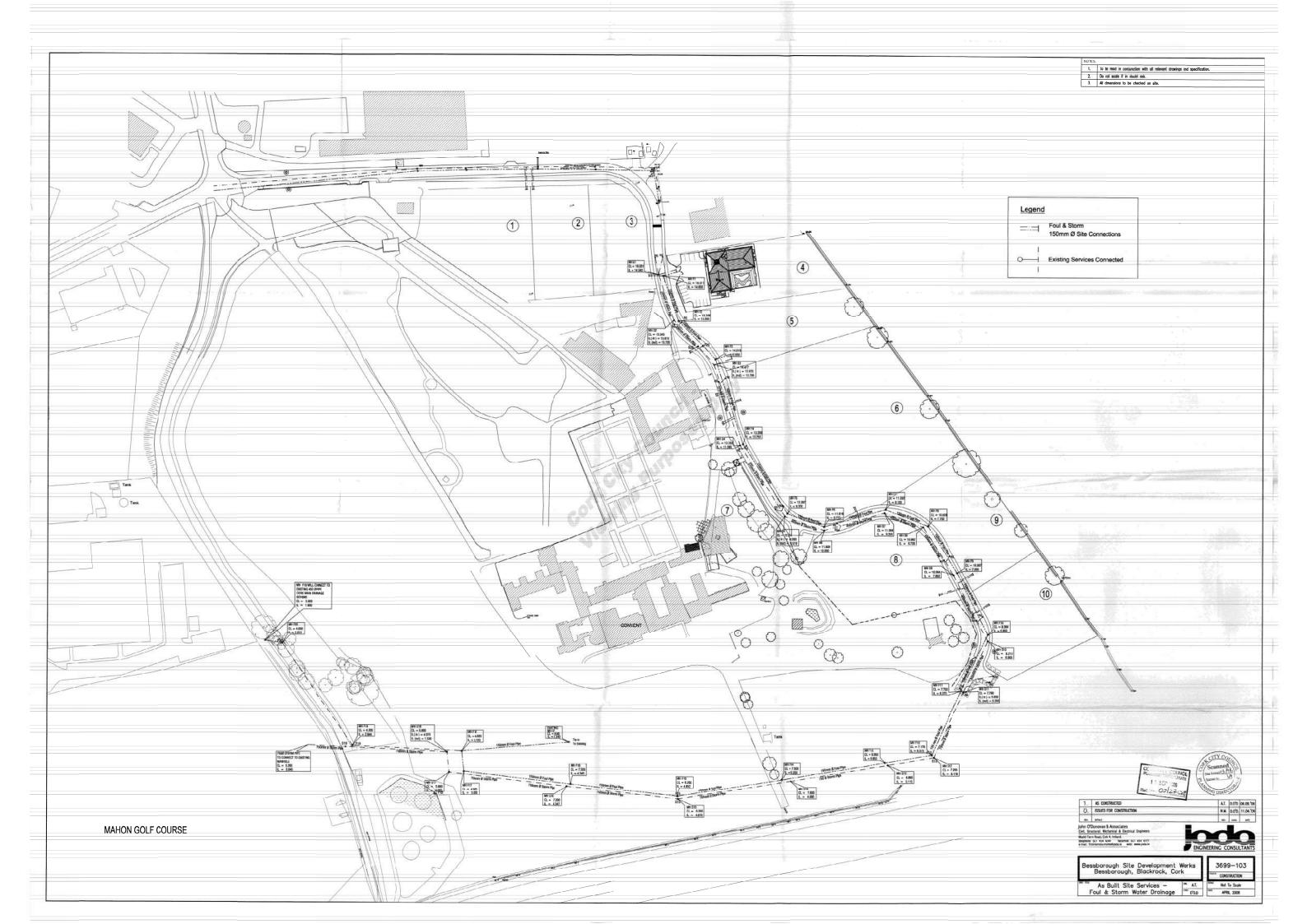
Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)
Residential	280	2.7	756	113,400	1.31	1.64	8.2
						Total	8.2

Table 4-1: Water Demand for Residential Development

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)			
Creche	320	42	42	6,300	0.073	0.091	0.455			
		1 per 20m ²	4	600	0.038					
Café	89	1 per 5m ²	18	2,700		0.048	0.240			
Communal Workspace	166	14	14	2,100	0.024	0.030	0.150			
Lounge	180	31	31	4,650	0.054	0.068	0.340			
Gym	191	1 per 5m ²	38	5,700	0.066	0.083	0.415			
	Total									
Total (Based on 12 Hour Day)										

Table 4-2: Water Demand for Commercial development


PROPOSED SITE LAYOUT PLAN


CORK CITY COUNCIL - EXISTING WASTEWATER NETWORK

AS-BUILT LOCAL DRAINAGE NETWORK

IRISH WATER - CONFIRMATION OF FEASIBILITY

IRISH WATER - STATEMENT OF DESIGN ACCEPTANCE

Tim Finn

JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island Co. Cork T45KH74

9 February 2022

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

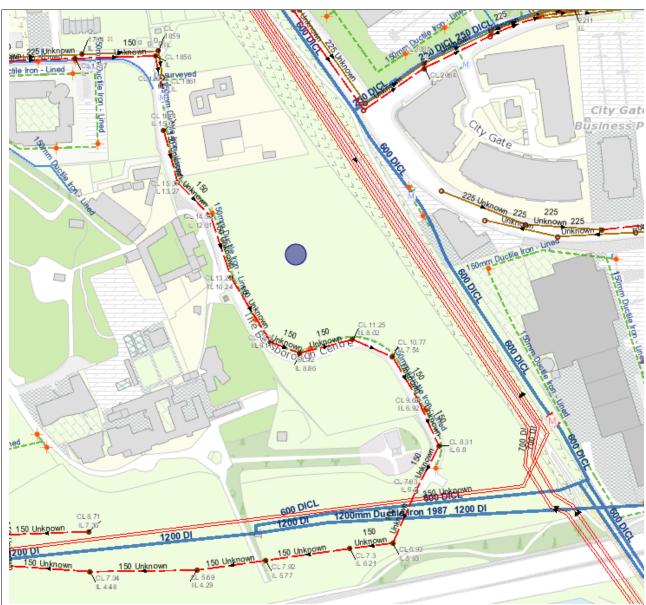
Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: CDS21001326 pre-connection enquiry - Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 280 unit(s) and creche at Bessboro, Blackrock, Co. Cork

Dear Sir/Madam,


Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Bessboro, Blackrock, Co. Cork (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.						
Water Connection	Feasible without infrastructure upgrade by Irish Water						
Wastewater Connection	Feasible Subject to upgrades						
SITE SPECIFIC COMMENTS							
Water Connection	Connection to be made to the existing 150mm DI adjacent to site. No works to interfere with existing 1200mm trunkmain. No diversions of this main shall be permitted.						
Wastewater Connection	Bessborough WWPS is almost at design loading capacity. Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development. This upgrade project is scheduled to be completed by Q4 2022 (this may be subject to change) and the proposed connection could be completed as soon as possibly practicable after this date.						
Strategic Housing Development	Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a						

Statement of Design Acceptance in relation to the layout of water and wastewater services.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the

information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

Yvonne Harris

Gronne Haceis

Head of Customer Operations

Diarmuid O' Brien
JB Barry & Partners
3 Eastgate, Eastgate Business Park
Little Island, Co. Cork T45KH74

28 February 2022

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcal

Irish Water PO Box 448, South City Delivery Office, Cark City.

www.water.ie

Re: Design Submission for Bessboro, Blackrock, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS21001326

Dear Diarmuid O'Brien,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative:

Name: Kyle Jackson

Email: kyle.jackson@water.ie

Yours sincerely,

Yvonne Harris

Monne Haceis

Head of Customer Operations

FOUL SEWER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd	Page 1		
Classon House	20217 - Bessborough SHD		
Dundrum Business Park	(The Meadows)		
Dublin 14	Foul Sewer	Micro	
Date 18/02/2022 17:44	Designed by DOB		
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage	
Innovyze	Network 2020.1		

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

<pre>Industrial Flow (1/s/ha)</pre>	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (1/per/day)	150.00	Maximum Backdrop Height (m)	4.000
Persons per House	2.70	Min Design Depth for Optimisation (m)	1.200
Domestic (1/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length	Fall	Slope	Area	Houses	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F1.000	14.279	0.238	60.0	0.000	0		2.6	1.500	0	225	Pipe/Conduit	ð
F1.001	20.109	0.134	150.1	0.000	0			1.500	0		Pipe/Conduit	ĕ
F1.002	69.671	0.465	149.8	0.000	0		0.0	1.500	0		Pipe/Conduit	•
F2.000	26.947	0.449	60.0	0.000	0		1.2	1.500	0	225	Pipe/Conduit	ð
F2.001	26.434	1.088	24.3	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
F1.003	27.027	0.180	150.2	0.000	0		0.0	1.500	0	225	Pipe/Conduit	€
F1.004	31.230	0.208	150.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₫*
F1.005	29.246	0.195	150.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	♂
F3.000	10.497	0.175	60.0	0.000	0		0.9	1.500	0	225	Pipe/Conduit	ð
F3.001	23.302	0.155	150.3	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ⅎ
F3.002	49.153	1.090	45.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₫*
F1.006	27.571		149.8	0.000	0		0.0	1.500	0	225	Pipe/Conduit	€
F1.007	23.108	0.963	24.0	0.000	0		1.2	1.500	0	225	Pipe/Conduit	₫*
F1.008	7.094	0.263	27.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₫*

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Base (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.000	11.970	0.000	2.6	0	0.0	32	0.74	1.48	59.0	2.6
F1.001	11.732	0.000	2.6	0	0.0	40	0.54	0.94	37.2	2.6
F1.002	11.598	0.000	2.6	0	0.0	40	0.54	0.94	37.2	2.6
F2.000	12.670	0.000	1.2	0	0.0	22	0.58	1.48	59.0	1.2
F2.001	12.221	0.000	1.2	0	0.0	18	0.80	2.33	92.8	1.2
F1.003	11.133	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8
F1.004	10.953	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8
F1.005	10.745	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8
F3.000	11.970	0.000	0.9	0	0.0	20	0.53	1.48	59.0	0.9
F3.001	11.795	0.000	0.9	0	0.0	24	0.39	0.94	37.2	0.9
F3.002	11.640	0.000	0.9	0	0.0	18	0.59	1.71	68.1	0.9
F1.006	10.550	0.000	4.7	0	0.0	54	0.64	0.94	37.2	4.7
F1.007	10.366	0.000	5.9	0	0.0	38	1.31	2.35	93.4	5.9
F1.008	9.403	0.000	5.9	0	0.0	40	1.25	2.22	88.1	5.9

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:44	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	1

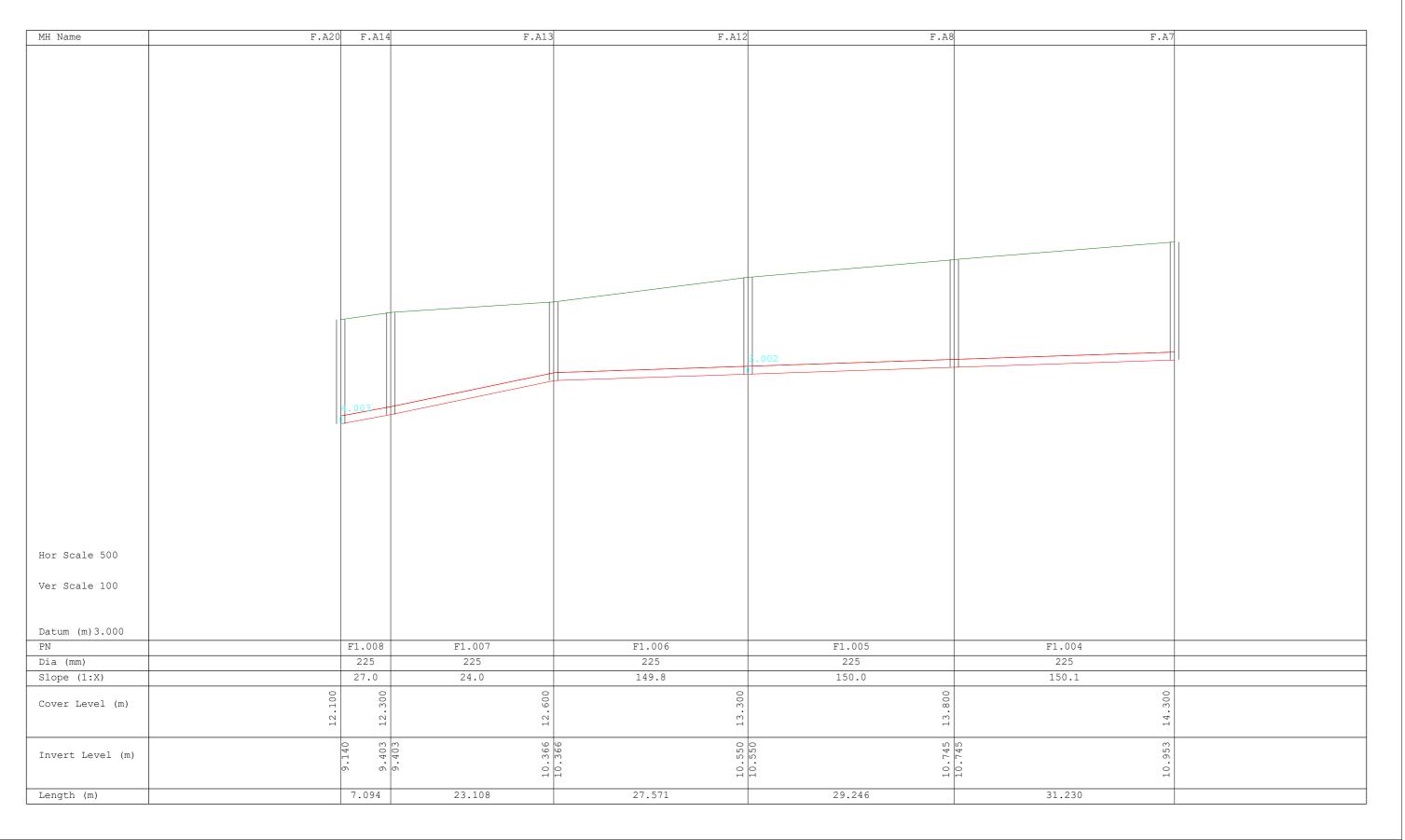
Network Design Table for Foul - Main

PN	Length	Fall	Slope	Area	Houses	Ва	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F4.000	18.382	0.306	60.1	0.000	0		1.0	1.500	0	225	Pipe/Conduit	ð
	30.621				0			1.500	0		Pipe/Conduit	•
											_	•
F5.000	10.220	0.465	22.0	0.000	0		0.9	1.500	0	225	Pipe/Conduit	0
	10.047				0			1.500	0		Pipe/Conduit	₫*
F4.003	52.923	0.353	149.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	●
E1 000	57.818	0 570	100 0	0 000	0		0 0	1.500		225	Dina/Canduit	
									0		Pipe/Conduit	₽
F1.010					0			1.500	0		Pipe/Conduit	₩.
F1.011	36.298	0.363	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₩.
F1.012	64.690	0.647	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₩.
F1.013	27.697	0.277	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
F1.014	24.176	0.242	99.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
F1.015	27.035	0.270	100.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
F1.016	33.938	0.339	100.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ŏ
F1.017	45.563	1.478	30.8	0.000	0		8.8	1.500	0	225	Pipe/Conduit	•
F1.018	45.563	0.456	99.9	0.000	0			1.500	0		Pipe/Conduit	•
	78.650		38.5	0.000	0			1.500	0		Pipe/Conduit	•
			22.0	0.000	0			1.500	0		Pipe/Conduit	
11.020	10.401	0.4/5	22.0	0.000	U		0.0	1.500	O	225	TThe\ collant	₫*

Network Results Table

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	-		Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)
F4.000	10.070	0.000	1.0	0	0.0	21	0.55	1.48	58.9	1.0
F4.001	9.764	0.000	2.0	0	0.0	36	0.49	0.94	37.2	2.0
F5.000	10.070	0.000	0.9	0	0.0	16	0.75	2.45	97.6	0.9
F4.002	9.560	0.000	2.9	0	0.0	43	0.55	0.94	37.2	2.9
F4.003	9.493	0.000	2.9	0	0.0	43	0.55	0.94	37.2	2.9
F1.009	9.140	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.010	8.562	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.011	8.187	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.012	7.824	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.013	7.177	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.014	6.900	0.000	8.8	0	0.0	67	0.89	1.15	45.7	8.8
F1.015	6.658	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.016	6.388	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.017	6.049	0.000	17.6	0	0.0	71	1.65	2.07	82.4	17.6
F1.018	4.571	0.000	17.6	0	0.0	97	1.07	1.15	45.7	17.6
F1.019	4.115	0.000	23.7	0	0.0	88	1.65	1.85	73.7	23.7
F1.020	2.071	0.000	23.7	0	0.0	76	2.02	2.45	97.5	23.7

Free Flowing Outfall Details for Foul - Main


Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W	
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)	
								(m)			
	F1.020	F.A32		3.800		1.596		0.000	0	0	

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Designado
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilacje
Innovyze	Network 2020.1	

MH Name	F.A7	F.A6	F.A3	F.A2	F.A1
	2 *11/	1	2 11.0	1 112	
			001		
	1				
Hor Scale 500					
Ver Scale 100					
Dot (m) (000					
Datum (m) 4.000 PN		F1.003	F1.002	F1.001	F1.000
Dia (mm)		225	225	225	225
Slope (1:X)		150.2	149.8	150.1	60.0
010bc (1.V)					
Cover Level (m)	300	14.280	14. 680	060	400
	4 '-	14.	4.1	4.	113.
Invert Level (m)	i L	10.953		111.598	0 20
	C	· · · · · · · · · · · · · · · · · · ·	· -		· · · · · · · · · · · · · · · · · · ·
	ī.				
Length (m)		27.027	69.671	20.109	14.279

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020 1	

J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	·

MH Name	F.A23	F.A22	F.A21		F.A20
	1				
					4.003
	1				
Hor Scale 500					
Ver Scale 100					
Datum (m) 2.000					
PN		F1.011	F1.010	F1.009	
Dia (mm)		225	225	225	
Slope (1:X)		100.0	100.1	100.0	
	009	000	004		100
Cover Level (m)	•	11.900			•
	[⊢] ⊢	11	122		17
		4	7	N	0
Invert Level (m)	0	7.824	. T	8.562	. 140
	ľ	· · · · · · · · · · · · · · · · · · ·	ω	∞	ன்
Tenath (m)		36.298	37.535	57.818	
Length (m)		JU.290	31.333	37.010	

J.B. Barry & Partners Ltd		Page 4
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilacie
Innovyze	Network 2020.1	

MH Name	F.A27	F.A26	F.A25	F.A24	F.A23	
Hor Scale 500						
1101 00416 000						
Ver Scale 100						
Datum (m)1.000						
PN		F1.015	F1.014	F1.013	F1.012	
Dia (mm)		225	225	225	225	
Slope (1:X)		100.1	99.9	100.0	100.0	
Cover Level (m)	11.000	500	11.800	12.100	0009	
SOVET HEVET (III)	1.0		, t	2.1	- I	
	-					
Invert Level (m)		3888	6.900	77	1177	
THACTC PGAGT (III)		8888898989	9.	6.900	<u> </u>	
Length (m)		27.035	24.176	27.697	64.690	

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	F.A28	F.A27	
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	1		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
Hor Scale 500	· · · · · · · · · · · · · · · · · · ·		
Ver Scale 100	· · · · · · · · · · · · · · · · · · ·		
ver scare 100	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
Datum (m) 0.000	<u> </u>		
PN		F1.016	
Dia (mm)		225	
Slope (1:X)		100.1	
Cover Level (m)	10.900	11.000	
	01		
Invert Level (m)	· · · · · · · · · · · · · · · · · · ·	6.049	
	· · · · · · · · · · · · · · · · · · ·	9	
Length (m)		33.938	
-		1	

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	F.A6	F.A5	F.A4	
	1.110	1.110	1 .11-1	
		1.002		
Hor Scale 500				
Ver Scale 100				
Datum (m)4.000				
PN		F2.001	F2.000	
Dia (mm)		225	225	
Slope (1:X)		24.3	60.0	
	õ	00	0	
Cover Level (m)	14.280	14.200	14.100	
	4.	4.	4. L	
Invert Level (m)		11.133	12.221	
		. 11	12.	
Length (m)		26.434	26.947	

J.B. Barry & Partners Ltd		Page 7
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020.1	

MH Name F.A12 F.A10 F.A9	
	I I
1.005	
Hor Scale 500	
Ver Scale 100	
Datum (m) 4.000	
PN F3.002 F3.001 F3.000	
Dia (mm) 225 225	
Slope (1:X) 45.1 150.3 60.0	
Cover Tenel (W)	
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
Invert Tenel (w) 01 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Invert Tenel (W) Invert Tenel	
Length (m) 49.153 23.302 10.497	

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020.1	

Road Social So	MH Name	F.A20	F.A19	F.A18	F.A16	F.A15	
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Hor Scale 500 Ver Scale 100 Datum (m)2.000 FX F4.003 F4.002 F4.001 F4.000 F5X F4.000 F5X F4.001 F4.000 F5X F4.001 F4.000 F6.000 F6.00							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0					5.000		
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0			.008				
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Ver Scale 100 Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Slope (1:X) Cover Level (m) Truert Level (m) PR F4.003 F4.002 F4.001 F4.000 F4.0							
Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Dia (mm) Slope (1:X) Cover Level (m) Dia (mm) Dia (m	Hor Scale 500						
Datum (m) 2.000 PN F4.003 F4.002 F4.001 F4.000 Dia (mm) Dia (mm) Slope (1:X) Cover Level (m) Dia (mm) Dia (m							
FN F4.003 F4.002 F4.001 F4.000 Dia (mm) 225 225 225 225 Slope (1:X) 149.9 150.0 150.1 60.1 Cover Level (m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ver Scale 100						
FN F4.003 F4.002 F4.001 F4.000 Dia (mm) 225 225 225 225 Slope (1:X) 149.9 150.0 150.1 60.1 Cover Level (m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
FN F4.003 F4.002 F4.001 F4.000 Dia (mm) 225 225 225 225 Slope (1:X) 149.9 150.0 150.1 60.1 Cover Level (m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Datum (m) 2.000						
Slope (1:X) Cover Level (m) Invert Level (m) Slope (1:X) 149.9 150.0 150.1 60.1 60.1 170.0 150.0 150.1 60.1	PN						
Invert Fence (W) Locat Tener (W) Locat	Dia (mm)						
Invert Fence (W)		0					
Invert Fence (W)	Cover Level (m)	1.100		.500	005.	.500	
Invert Tener (w) 1		12	11	디디	11	11	
Q	Towns T. D. ()		0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60	69	70	
	invert Level (m)		ა ⊔	6 6	و. 5. و	r. 0. 0	
Length (m) 52.923 10.047 30.621 18.382	Length (m)		52.923	10.047	30.621	18.382	

J.B. Barry & Partners Ltd		Page 9
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Thhoware	Network 2020 1	<u> </u>

MH Name	F.A18 F.A17	
	4.001	
H 01 500		
Hor Scale 500		
Ver Scale 100		
Datum (m) 2.000		
PN Dia (mm)	F5.000 225	
Slope (1:X)	22.0	
Cover Level (m)	•	
	1 1	
Invort Torrel (m)	· · · 605	
Invert Level (m)	9.605	
Length (m)	10.220	

Appendix 6

PRIORITY GEOTECHNICAL LTD - GROUND INVESTIAGTION

Our Ref: JMS/Rp/P21239 + attachments (*.pdf)

16th March, 2022

JB Barry & Partners Limited

3 Eastgate Road,
Eastgate Business Park,
Little Island,
Co. Cork,
T45 KH74.

Re: Bessborough SHD Sites, Site Investigation, Factual report.

Introduction

In November 2021, Priority Geotechnical (PGL) were requested by JB Barry & Partners Limited acting on behalf of their client Estuary View Enterprises to undertake a site investigation as part of the Bessborough SHD Sites project.

P21239_Rp_F02 1 of 8

Objectives

The objective of the site investigation contract is to determine the ground and groundwater conditions in order to inform the engineering design solutions for the proposed development.

Scope

The original scope of the site investigation, which was specified by JB Barry & Partners, comprised of:

- 06Nr. Cable percussion boreholes;
- Trial pits;
- Surveying of 'as-built' levels and co-ordinates;
- All associated sampling;
- All associated laboratory works;
- Associated reporting;

The final site works as completed is outlined, herein. This geotechnical data report presents the fieldworks records with regard to the site investigation for the Bessborough SHD Sites Project. The report should be read in conjunction with the exploratory records, the photographic records and the laboratory test data accompanying this report.

Site Works

This investigation was carried out in accordance with Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards (BS 5930 (2015) Code of Practice for Site Investigation and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, *in situ* Tests Parts 1 to 9).

The direct intrusive fieldworks were undertaken from the 10th and 17th January, 2022 to under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, accompanying this report.

P21239_Rp_F02 2 of 8

Cable Percussion Boreholes

Six (06) cable percussion boreholes were drilled to depths 4.4m below existing ground level (bgl) to 9.1m bgl using PGL's Dando 2000 Rig and 200mm diameter casing. The logs are accompanying this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
BH01	4.4	13/01/2022
BH02	9.1	10/01/2022
BH03	8.4	12/01/2022
BH04	7.3	14/01/2022
BH05	7.4	17/01/2022
BH06	7.0	13/01/2022

Chiselling								
Location	Depth Top (m bgl)	Depth Base (m bgl)	Duration (hh:mm)	Tool				
BH01	1.20	1.30	01:00	Chisel.				
BH0.1	4.30	4.40	01:00	Chisel.				
BH02	2.75	2.90	01:00	Chisel.				
БПО2	8.90	9.10	01:00	Chisel.				
ВН03	4.90	5.00	01:00	Chisel.				
	8.30	8.40	01:00	Chisel.				
BH04	3.80	4.00	01:00	Chisel.				
БП04	7.20	7.30	01:00	Chisel.				
BH05	6.70	6.90	01:00	Chisel.				
БПОЭ	7.30	7.40	01:00	Chisel.				
BH06	5.75	5.95	01:00	Chisel.				
рш0	6.90	7.00	01:00	Chisel.				

Trial Pits

Seven (07) trial pits were excavated to depths 0.3m bgl to 4.6m bgl using a 14t tracked excavator. The exploratory logs and photographic records accompany this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
TP01	3.9	11/01/2022
TP02	3.2	10/01/2022
TP03	4.5	11/01/2022
TP04	4.5	13/01/2022
TP05	4.5	14/01/2022
TP06	0.3	12/01/2022
TP06A	4.6	12/01/2022

P21239_Rp_F02 3 of 8

Sampling

A total of sixty two (62) bulk disturbed samples (B) and twenty two (22) small disturbed samples (D) were recovered from the exploratory holes in accordance with Geotechnical Investigation and Sampling – Sampling Methods and Groundwater Measurements (EN ISO 22475-1:2006).

In-Situ Testing

Standard Penetration Tests (SPT)

A total of thirty nine (39) standard penetration tests, were carried out in the cable percussion boreholes using the 60° solid cone (CPT) in place of the standard split barrel sampler. The data was presented on the relevant logs accompanying this factual report.

Falling Head Tests

Two (02) *in situ* falling head permeability tests were carried out in boreholes; in accordance with BS5930: 1999, Section 4: Cl. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data was presented on the relevant borehole log presented accompanying this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_{e} (H_{0}/H_{1})}{t}$$

Generally for all tests the specific depth range of the test was the deposits below the depth of casing. A mean k measured ($k_H = k_V$), permeability in the soil was assumed equal in both horizontal and vertical direction, ($k_H/k_V = 1$.). The test geometry provided a shape factor, f for the test undertaken in the standpipe well.

Dynamic Probing

PGL's Competitor dynamic probing rig was used to undertake dynamic probing (DP(H); 50kg drop weight, 500mm drop height) in general accordance with Geotechnical Investigation and Testing, Part 2, Dynamic probing, BS EN ISO 22476-2:2005. The blows per 100mm (N_{100 H}) were recorded to refusal being 25blows without progress over 100mm. Six (06) number dynamic probes progressed to refusal at depths 2.7m bgl to 8.8m bgl. The exploratory logs accompany this factual report.

P21239_Rp_F02 4 of 8

Location	Refusal depth, m bgl
DP01	3.7
DP02	8.8
DP03	2.7
DP04	5.0
DP05	3.0
DP06	3.5

Survey and Drawings

The 'as built' exploration locations were surveyed to the Ordinance Survey Irish Transverse Mercator system of co-ordinates (ITM) and elevations to Malin Head datum and shown on the relevant exploratory logs and the Exploratory Location Plans (P21239-SI-A, P21239-SI-01) accompanying this report.

Location	Easting	Northing	Ground Level (mOD)	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
BH01	171820.78	70468.88	16.64	4.40	13/01/2022
BH02	171741.94	70395.18	13.07	9.10	10/01/2022
BH03	171738.42	70311.70	11.49	8.40	12/01/2022
BH04	172026.44	70364.45	12.50	7.30	14/01/2022
BH05	172034.00	70300.87	12.21	7.40	17/01/2022
BH06	171946.00	70338.05	13.57	7.00	13/01/2022
DP01	171821.58	70465.48	16.54	3.70	13/01/2022
DP02	171742.31	70392.88	12.93	8.80	13/01/2022
DP03	171735.89	70311.95	11.53	2.70	13/01/2022
DP04	172027.93	70363.86	12.40	5.00	13/01/2022
DP05	172033.97	70304.80	12.21	3.00	14/01/2022
DP06	171944.50	70343.17	13.61	3.50	13/01/2022
TP01	171822.48	70466.73	16.60	3.90	11/01/2022
TP02	171742.96	70394.13	13.04	3.20	10/01/2022
TP03	171736.67	70314.17	11.80	4.50	11/01/2022
TP04	172026.89	70362.36	12.35	4.50	13/01/2022
TP05	172033.99	70303.02	12.21	4.50	14/01/2022
TP06	171940.73	70337.93	13.69	0.30	12/01/2022
TP06A	171944.88	70339.22	13.61	4.60	12/01/2022

Laboratory Testing

Laboratory testing was ongoing at the time of reporting.

P21239_Rp_F02 5 of 8

Published Geology

A search of the Geological Survey data base and 1:100,000 mapping (Sheet 25) identified two (02) major lithological units defining the area. The majority of the site is underlain by Waulsortian Limestones (WA) described as massive unbedded Lime-Mudstones. The Little Island Formation (LI) is mapped to the north and defined by massive and crinoidal fine Limestone.

Teagasc subsoil mapping indicates that the area is underlain by Made Ground deposits. The National Groundwater Vulnerability mapping indicates the area mostly has a rating of high vulnerability.

Ground and Groundwater Conditions

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (2015) and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002),—Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, *in situ* testing and details of the samples taken, together with any observations made during the ground investigation.

Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc. Low volume groundwater flow may be cut-off by borehole casing as it progresses in stiff glacial deposits. The duration trial pit excavations remain open may not be sufficient to allow for low volume flow to present. The groundwater regime should be assessed from standpipe well installations.

Groundwater was encountered at depths 3.10m bgl to 3.90m bgl during the period of fieldworks within the extent of the borehole and pit excavations, summarised below. The exploratory locations were backfilled with grout, gravel and arisings.

P21239_Rp_F02 6 of 8

SUMMARY OF GROUNDWATER

Location	Depth Strike (m bgl)	Remarks	Standpipe (Y/N)
BH01	-	None encountered.	N
BH02	-	None encountered.	Υ
BH03	-	None encountered.	N
BH04	-	None encountered.	N
BH05	-	None encountered.	N
BH06	-	None encountered.	Υ
TP01	-	None encountered.	N
TP02	-	None encountered.	N
TP03	-	None encountered.	N
TP04	3.9	Trickle rate of flow	N
TP05	3.9	Slow rate of flow	N
TP06	-	None encountered.	N
TP06A	3.1	Trickle rate of flow	N

Two (02) number 50mm dia. HDPE standpipe wells were constructed to allow for groundwater monitoring. The construction details are summarised below.

SUMMARY OF STANDPIPE CONSTRUCTION

Location	Depth Top (m bgl)	Depth Base (bgl)	Diameter (mm)	Pipe Type	Pipe Details
BH02	0.00	2.00	50	PLAIN	Plain.
БПО2	2.00	8.50	50	SLOTTED	Slotted.
DUOG	0.00	3.50	50	PLAIN	Plain.
BH06	3.50	7.00	50	SLOTTED	Slotted.

Exploratory locations were backfilled with their arisings or gravel and bentonite for locations with monitoring wells. Backfill details are displayed graphically on the accompanying logs and summarised below.

SUMMARY OF STANDPIPE DIPS

Location	08/02/2022			
Location	Depth (m bgl)			
BH02	Dry			
BH06	4.4			

P21239_Rp_F02 7 of 8

SUMMARY OF BACKFILL

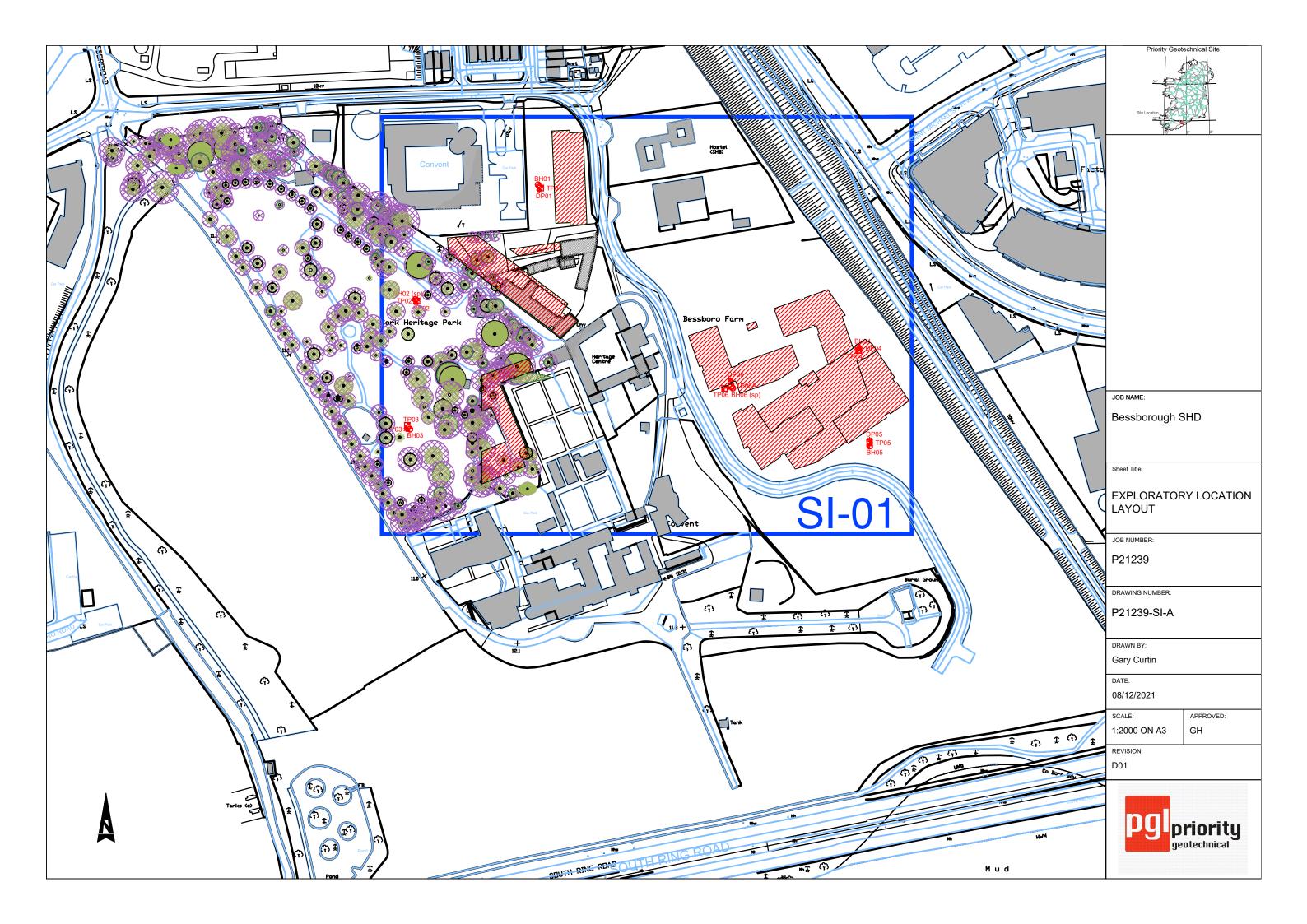
GRAVEL Backfill to installation/borehole	ARISINGS Backfill
uPVC slotted pipe	BENTONITE Backfill to installation

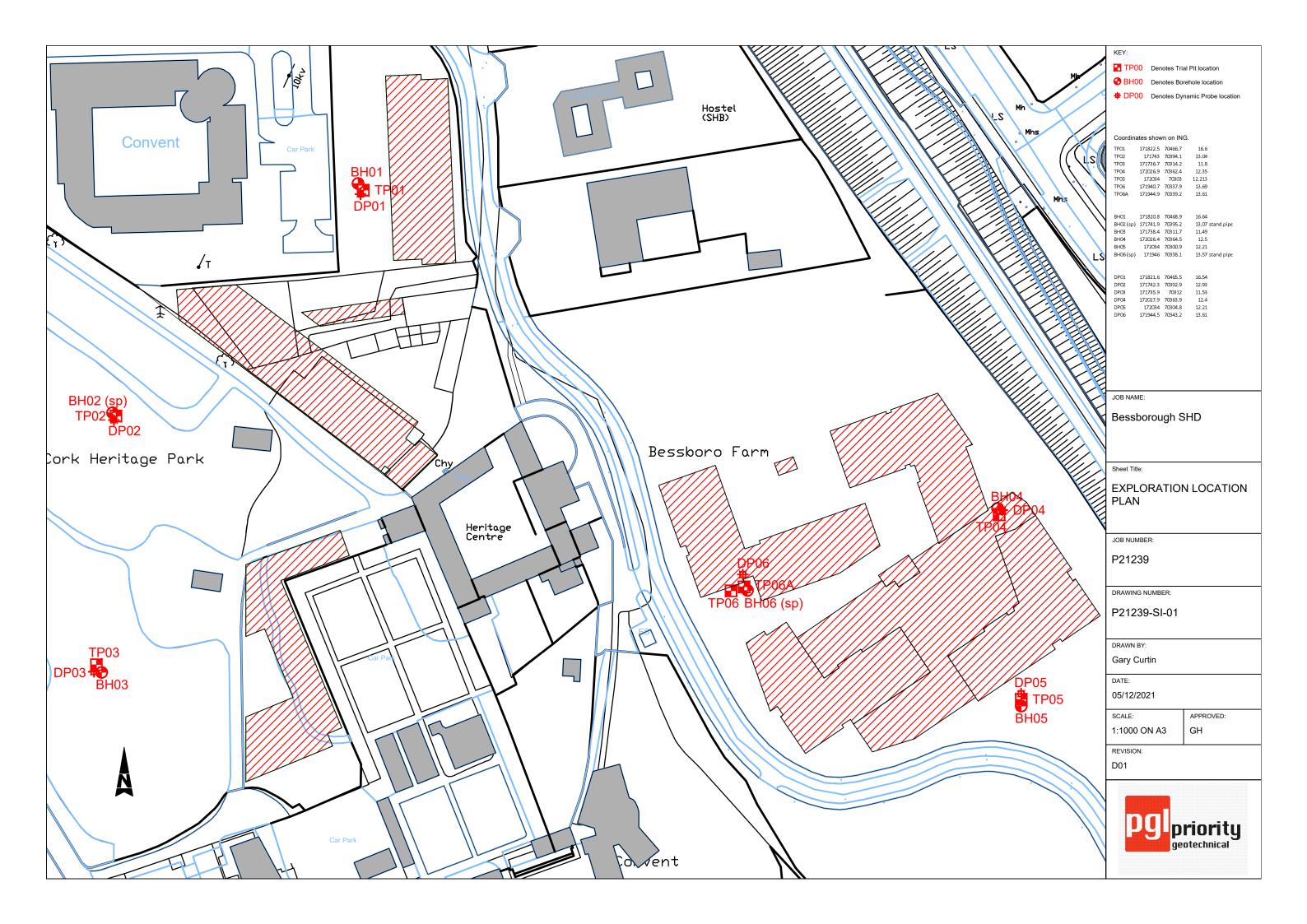
Should you have any queries in relation to the data collected and presented herein, please do not hesitate to contact our office.

Yours sincerely,

For Priority Geotechnical,

James McSweeney BSc Engineering Geologist


5 Mence


No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations.

No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.

This report has been prepared for Employer and their Representative as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

P21239_Rp_F02 8 of 8

KEY TO SYMBOLS ON EXPLORATORY HOLE RECORDS

All linear dimensions are in metres or millimetres

DESCRIPTIONS

** Drillers Description
Friable Easily crumbled

SAMPLES

U() Undisturbed 102mm diameter sample, () denotes number of blows to drive sampler

U()F, U()P F- not recovered, P-partially recovered
U38 Undisturbed 38mm diameter sample

P(F), (P) Piston sample - disturbed
B Bulk sample - disturbed
D Jar Sample - disturbed

W Water Sample

CBR California Bearing Ratio mould sample
ES Chemical Sample for Contamination Analysis

SPTLS Standard Penetration Test S lump sample from split sampler

CORE RECOVERY AND ROCK QUALITY

TCR Total Core Recovery (% of Core Run)

SCR Solid Core Recovery (length of core having at least one full diameter as % of core run)

RQD Rock Quality Designation (length of solid core greater than 100mm as % of core run)

Where there is insufficient space for the TCR, SCR and RQD, the results may be found in the remarks column

If Fracture Spacing in mm (Minimum/Average/Maximum) NI - non intact, NR - no recovery

AZCL Assumed Zone of Core Loss

NI Non intact

GROUNDWATER

abla Groundwater strike

▼ Groundwater level after standing period

Date/Water Date of shift (day/month)/Depth to water at end of previous shift shown above the date

and depth to water at beginning of shift given below the date $% \left(1\right) =\left(1\right) \left(1\right$

INSITU TESTING

S Standard Penetration Test - split barrel sampler
C Standard Penetration Test - solid 60° cone

SW Self Weight Penetration

Ivp, HVp (R) In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength

K(F), (C), (R), (P) Permeability Test
HP Hand Penetrometer Test

MEASURED PROPERTIES

N Standard Penetration Test - blows required to drive 300mm after seating drive

x/y Denotes x blows for y mm within the Standard Penetration Test

x*/y Denotes x blows for y mm within the seating drive

C_{II} Undrained Shear Strength (kN/m²)

CBR California Bearing Ratio

ROTARY DRILLING SIZES

Index Letter	Nominal Diameter (mm)				
	Borehole	Core			
N	75	54			
Н	99	76			
Р	120	92			
S	146	113			

Drilled By Borehole No. Priority Geotechnical Ltd. PC priority Tel: 021 4631600 **BH01** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie CS Sheet 1 of 1 Project No. **Hole Type** 171821E - 70469N Project Name: Bessboro SHD Co-ords: P21239 CP Scale Location: Mahon, Cork Level: 16.64 m OD 1:50 Date: 13/01/2022 14/01/2022 Client: Estuary View Ent. Ltd Water Sample and In Situ Testing Depth Level Well Strike Legend **Stratum Description** Backfil (m bgl) (mOD) Results (m bgl) Depth (m bgl) Type 0.00 - 1.00 Brown red, slightly sandy slightly gravelly CLAY. Sand В is fine to coarse. Gravel is fine to coarse, sub-angular ____ to sub-rounded. Driller describes: Fill clay with limestone boulders. 1.00 - 2.00 1.00 15.64 В 1 Firm, brown red, slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel 1.00 SPT 65 (5,10/65 for (C) 150mm) is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular, limestone with dia 63-80mm. 1.20m - 1.30m: Driller noted: Boulders. Increased SPT blow counts locally. 2.00 - 3.00 В 2 2.00 SPT N=15 (3,3/4,4,3,4) (C) 3.00 - 4.00 3.00 В 13.64 3 Firm, brown red, slightly sandy slightly gravelly CLAY 3.00 SPT N=15 (3,3/4,4,3,4) with high cobble content. Sand is fine to coarse. (C) Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-rounded, limestone with dia 63-120mm. Driller describes: Hard gravelly clay with SPT 90 (9,10/90 for 4.00 4 225mm) (C) 4.40 12.24 End of Borehole at 4.400m 5 6 7 8 9 Chiselling Details: Groundwater: Hole Information: Base (m) Duration (hh:mm) 1.30 01:00 Tool Chisel.

Struck (m bgl)	Rose to (m bgl)	After (mins)	Sealed (m bgl)	Comment	Depth (m bgl) 4.40	Hole Dia (mm) 200	Casing Dia 200	(mm) 4.30			01:00 Chisel.
				None encountered.	Equipment:	Dando 2000					
Remarks:					Shift Dat	ta: GW (m bgl	Shift 13/01/2022		Depth (m bgl)	Remarks Start of shift.	
Cable perc	able percussion borehole terminated at 4.40m bgl.						Dry Dry	13/01/2022	2 08:00	2.00	End of shift. Start of shift.
							Dry	14/01/2022	2 18:00	4.40	End of borehole.

Drilled By Borehole No. Priority Geotechnical Ltd. PC priority Tel: 021 4631600 **BH02** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie Sheet 1 of 1 CS Project No. **Hole Type** 171742E - 70395N Project Name: Bessboro SHD Co-ords: P21239 CP Scale Location: Mahon, Cork Level: 13.07 m OD 1:50 Client: Date: 10/01/2022 11/01/2022 Estuary View Ent. Ltd Water Sample and In Situ Testing Depth Level Well Backfil Strike Legend **Stratum Description** (mOD) (m bgl) Results (m bgl) Depth (m bgl) Type 0.00 - 1.00 Brown red, slightly sandy slightly gravelly CLAY. Sand В is fine to coarse. Gravel is fine to coarse, sub-angular to sub-rounded. Driller describes: Gravel clay. 1.00 - 2.00 1.00 12.07 В Soft, brown red, slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, sub-1.00 SPT N=6 (1,1/1,1,2,2) (C) angular to sub-rounded. Driller describes: Gravelly 2.00 - 3.00 В 2 2.00m - 3.00m: Driller noted: Boulders. N=7 (1,1/1,2,2,2) (C) 3.00 - 4.00 3.00 10.07 В 3 Firm to stiff, brown red, slightly sandy slightly gravelly 3.00 SPT N=12 (3,3/2,3,3,4) silty CLAY with low cobble content. Sand is fine to (C) coarse. Gravel is fine to coarse, sub-angular to subrounded. Cobbles are sub-rounded, Limestone with dia 63-170mm dia. 4.00 - 5.00 В 4 SPT 4.00 N=21 (4,4/5,5,6,5) (C) 5.00 - 6.00 В 5.00 8.07 5 Stiff, brown red, slightly sandy slightly gravelly CLAY 5.00 SPT N=24 (5,6/5,6,7,6) with medium cobble content. Sand is fine to coarse. (C) Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-rounded, limestone with dia 63-170. Driller describes: boulders. 6.00 - 7.00 6 В 6.00 SPT N=29 (6,6/7,7,8,7) (C) 7.00 - 8.00 В 7 7.00 SPT N=33 (7,7/8,8,9,8) (C) 8.00 SPT N=32 (7,8/9,5,9,9) 8 (C) 9 3 97 9.10 End of Borehole at 9.100m

Groundwater:			Hole Informa	ation:		Chisellir	3				
O. Gariar	vator.					400111		Top (m) 2.75	Base (m) 2.90	Duration (hh:mm) 01:00	Tool Chisel.
Struck (m bgl)	Rose to (m bgl)	After (mins)	Sealed (m bgl)	Comment	Depth (m bgl) 9.10	Hole Dia (mm) 200	Casing Dia (mm) 200	8.90	9.10	01:00	Chisel.
5g.,		(111113)		None encountered.	9.10	200	200	-			
					Equipment:	Dando 2000.					

Remarks:	Shift Data:	GW (m bgl)	Shift	Depth (m bgl)	Remarks
Remarks.	Silit Data.		10/01/2022 08:00	0.00	0.00 Start of shift. 0.00 End of shift.
Cable percussion borehole terminated at 9.10m bgl.			10/01/2022 18:00	0.00	End of shift.
Gazio porcassioni por onicio terminato at c. rom agi.			11/01/2022 08:00	0.00	Start of shift.

11/01/2022 18:00

9.10

End of borehole.

Dry

Drilled By Borehole No. Priority Geotechnical Ltd. PC priority Tel: 021 4631600 **BH03** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie CS Sheet 1 of 1 Project No. **Hole Type** 171738E - 70312N Project Name: Bessboro SHD Co-ords: P21239 CP Scale 11.49 Location: Mahon, Cork Level: m OD 1:50 Client: Date: 12/01/2022 12/01/2022 Estuary View Ent. Ltd Water Sample and In Situ Testing Depth Level Well Strike Legend **Stratum Description** Backfil (m bgl) (mOD) Results (m bgl) Depth (m bgl) Type 0.00 - 1.00 Soft becoming firm, brown red, slightly sandy slightly В gravelly CLAY. 1.00 - 2.00 В 1 1.00 SPT N=7 (1,1/1,2,2,2) (C) 2.00 - 3.00 В 2 2.00 SPT N=7 (1,1/2,2,1,2) (C) 3.00 - 4.00 В 3 3.00 SPT N=10 (2,3/3,2,3,2) (C) 4.00 - 5.00 В 4.00 7.49 4 Stiff, brown red, slightly sandy slightly gravelly CLAY. SPT N=20 (3,4/4,5,5,6) 4.00 Sand is fine to coarse. Gravel is fine to coarse. (C) 5.00 - 6.00 В 5.00 6.49 5 Stiff, brown red, slightly sandy slightly gravelly CLAY 5.00 SPT N=26 (6,7/6,6,7,7) with low cobble content. Cobbles are sub-angular to (C) sub-rounded, Limestone with dia 63-80mm. 6.00 - 7.00 6.00 5.49 6 В Stiff, brown red, slightly sandy slightly gravelly CLAY with low cobble content. Cobbles are sub-angular to 9×8+ -0×7 -0×7 6.00 SPT N=28 (7,6/6,8,7,7) (C) sub-rounded, Limestone with dia 63-80mm. 6.00m - 8.40m: Driller noted Boulder content. 7.00 - 8.00 В 7 7.00 SPT N=34 (7,8/8,9,8,9) (C) 8.00 - 8.40 В 8 SPT 40 (9,10/40 for 8.00 150mm) (C) 8 40 3 09 End of Borehole at 8.400m 9 Chicalling Details

Groundy	water:				Holo Inform	ation:		Ciliacilli	iy Delai	13.	
Ground	vater.				Hole Illioilli	Hole Information:			Base (m) 5.00	Duration (hh:mm) 01:00	Tool Chisel.
Struck (m bgl)	Rose to (m bgl)	After (mins)	Sealed (m bgl)	Comment	Depth (m bgl) 8.40	Hole Dia (mm) 200	Casing Dia (mm) 200	4.90 8.30	8.40	01:00	Chisel.
				None encountered.	Equipment:	Dando 2000.					

Shift Data:

Dry

Shift

12/01/2022 08:00

12/01/2022 18:00

Remarks

Start of shift.

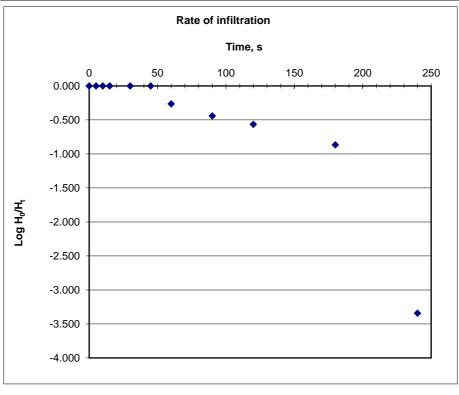
End of borehole.

Depth (m bgl)

0.00

8.40

Cal	ble p	ercussion	borehole	terminated	at 8	.40m	bgl.


Remarks:

P21239 Falling head permeability test

Location	Bessborough SHD		
BH ID	BH03	$H_{w/}H_{o}$	2.20
Test	1		
Casing diameter	200 mm		
Casing depth	2.00 m		
Borehole depth	2.20 m		
GW Influence	2.20 m bgl		
Date	12/01/2022		

Min	Sec	depth, m bgl	vol, cu.m	H _t	log H₀/Ht
0	0	0.000	0.00000	2.200	0.000
0.083	5	0.000	0.00000	2.200	0.000
0.17	10	0.000	0.00000	2.200	0.000
0.25	15	0.000	0.00000	2.200	0.000
0.5	30	0.000	0.00000	2.200	0.000
0.75	45	0.000	0.00000	2.200	0.000
1	60	1.000	0.03140	1.200	-0.263
1.5	90	1.400	0.04396	0.800	-0.439
2	120	1.600	0.05024	0.600	-0.564
3	180	1.900	0.05966	0.300	-0.865
4	240	2.199	0.06905	0.001	-3.342

 k_{mean} 1.12E-03 ms⁻¹ $k_H = k_V$

Drilled By Borehole No. Priority Geotechnical Ltd. PC Tel: 021 4631600 priority **BH04** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie CS Sheet 1 of 1 Hole Type Project No. Project Name: Bessboro SHD Co-ords: 172026E - 70364N P21239 CP Scale Location: Mahon, Cork Level: 12 50 m OD 1:50 14/01/2022 Client: Estuary View Ent. Ltd Date: 14/01/2022 Water Sample and In Situ Testing Depth Level Well Strike Legend **Stratum Description** Backfil (mOD) (m bal) (m bgl) Depth (m bgl) Type Results Dark brown, slightly sandy slightly gravelly SILT with plant material. 1.00 - 2.00 В 1.00 11.50 1 Firm, dark brown, slightly sandy slightly gravelly SILT. Sand is fine to coarse. Gravel is fine to coarse. 1.00 SPT N=9 (1,1/2,2,3,2) (C) 2.00 - 3.00 В 2.00 10.50 2 Firm, brown, slightly sandy slightly gravelly CLAY with 2.00 SPT N=9 (2,2/2,3,2,2) low cobble content. Sand is fine to coarse. Gravel is (C) fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular to sub-rounded, Limestone with dia 63-120mm 3.00 - 4.003.00 9.50 В 3 Firm to stiff, brown, slightly sandy slightly gravelly silty 3.00 SPT N=14 (2,3/3,4,3,4) CLAY with low cobble content. Sand is fine to coarse. (C) Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular to sub-rounded, Limestone with dia 63-120mm. Driller describes: boulders. 4 00 - 5 00 В 4 SPT N=22 (4,4/5,6,5,6) 4 00 (C) 5.00 - 6.00 В 5.00 7.50 5 Stiff, brown, slightly sandy slightly gravelly silty CLAY 5.00 SPT N=29 (6,5/7,7,8,7) with low cobble and boulder content. Sand is fine to (C) coarse. Gravel is fine to coarse, sub-angular to subrounded. Cobbles are sub-angular to sub-rounded, Limestone with dia 63-70mm. Boulders are subrounded, Limestone with dia 200. 6.00 - 7.00 6.00 6.50 В 6 Stiff, brown, slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel 6.00 SPT N=37 (7,8/8,9,9,11) (C) is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular to sub-rounded, Limestone with dia 63-90mm. SPT 75 (10,15/75 for 7.00 7 (C) 150mm) 7.30 5.20 End of Borehole at 7,300m 8 9 hiselling Details: Groundwater: Hole Information: Chisel Chisel Struck (m | Rose to (m Depth (m bgl) Hole Dia (mm) Casing Dia (mm) After Sealed (m Comment bgl) (mins) bgl) 200 None encountered.

Shift Remarks GW (m bgl) Depth (m bgl) Shift Data: 14/01/2022 08:00 0.00 Start of shift. Dry 14/01/2022 18:00 7.30 End of borehole.

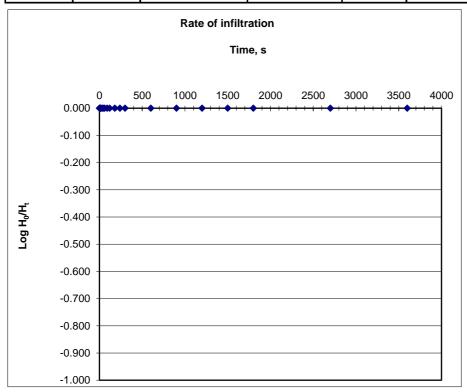
Dando 2000.

Equipment:

Cable percussion borehole terminated at 7.30m bgl.

Drilled By Borehole No. Priority Geotechnical Ltd. PC priority Tel: 021 4631600 **BH05** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie Sheet 1 of 1 CS Project No. Hole Type 172034E - 70301N Project Name: Bessboro SHD Co-ords: P21239 CP Scale Location: Mahon, Cork Level: 12.21 m OD 1:50 Client: Date: 17/01/2022 17/01/2022 Estuary View Ent. Ltd Water Sample and In Situ Testing Depth Level Well Strike Legend **Stratum Description** Backfil (mOD) (m bgl) Results (m bgl) Depth (m bgl) Type Firm becoming stiff, brown red, slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to 0.00 - 1.00 В coarse, sub-angular to sub-rounded. 1.00 - 2.00 В 1.00 SPT N=8 (1,1/2,2,2,2) (C) 2.00 - 3.00 В 2 SPT 3.00 N=13 (2,3/3,4,3,3) 3 (C) 4.00 - 5.00 В 4 SPT N=16 (3,4/3,4,4,5) 4.00 (C) 5.00 - 6.00 В 5.00 7.21 5 Stiff, brown red, slightly sandy slightly gravelly CLAY 5.00 SPT N=30 (5,6/7,7,8,8) with low cobble content. Sand is fine to coarse. Gravel (C) is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular to sub-rounded, 63-120mm dia., Limestone lithology. 6.00 - 7.00 6.00 6.21 В 6 Stiff, brown red, slightly sandy slightly gravelly CLAY with low cobble content and low boulder content. Sand 6.00 SPT N=38 (7,8/9,9,10,10) (C) is fine to coarse. Gravel is fine to coarse, sub-angular to sub--rounded. Cobbles are sub-angular to subrounded, 63-120mm dia., Limestone lithology. Boulders are sub-angular, 200-250mm dia., Limestone lithology. SPT 90 (9,10/90 for 7.00 7 225mm) (C) 7.40 4.81 End of Borehole at 7.400m 8 9 hiselling Details: Groundwater: Hole Information: Chisel Chisel Struck (m | Rose to (m Sealed (m Depth (m bgl) Hole Dia (mm) Casing Dia (mm) After Comment bgl) (mins) bgl) 200 None encountered. Equipment: Dando 2000

| Shift Data: |


P21239 Falling head permeability test

Location	Bessborough SHD		
BH ID	BH05	$H_{w/}H_{o}$	2.00
Test	1		
Casing diameter	200 mm		
Casing depth	1.50 m		
Borehole depth	2.00 m		
GW Influence	2.00 m bgl		
Date	17/01/2022		

Min	Sec	depth, m bgl	vol, cu.m	H _t	log H₀/Ht	
0	0	0.000	0.00000	2.000	0.000	
0.083	5	0.000	0.00000	2.000	0.000	
0.17	10	0.000	0.00000	2.000	0.000	
0.25	15	0.000	0.00000	2.000	0.000	
0.5	30	0.000	0.00000	2.000	0.000	
0.75	45	0.000	0.00000	2.000	0.000	
1	60	0.000	0.00000	2.000	0.000	
1.5	90	0.000	0.00000	2.000	0.000	k _{mean} ·
2	120	0.000	0.00000	2.000	0.000	$\mathbf{k}_{H} = \mathbf{k}_{V}$
3	180	0.000	0.00000	2.000	0.000	
4	240	0.000	0.00000	2.000	0.000	
5	300	0.000	0.00000	2.000	0.000	
10	600	0.000	0.00000	2.000	0.000	
15	900	0.000	0.00000	2.000	0.000	
20	1200	0.000	0.00000	2.000	0.000	
25	1500	0.000	0.00000	2.000	0.000	
30	1800	0.000	0.00000	2.000	0.000	
45	2700	0.000	0.00000	2.000	0.000	
60	3600	0.000	0.00000	2.000	0.000	

ms⁻¹

k_{mean} -

Notes:

No Change in groundwater level observed after 60 mins. Infiltration rate mot determined.

Drilled By Borehole No. Priority Geotechnical Ltd. PC priority Tel: 021 4631600 **BH06** Fax: 021 4638690 Logged By www.prioritygeotechnical.ie CS Sheet 1 of 1 Project No. **Hole Type** 171946E - 70338N Project Name: Bessboro SHD Co-ords: P21239 CP Scale Location: Mahon, Cork Level: 13.57 m OD 1:50 Date: Client: 13/01/2022 13/01/2022 Estuary View Ent. Ltd Water Sample and In Situ Testing Depth Level Well Backfil Strike Legend **Stratum Description** (m bgl) (mOD) Results (m bgl) Depth (m bgl) Type 0.00 - 1.00 В Brown, CLAY. 1.00 - 2.00 1.00 12.57 В Soft becoming stiff, brown red, slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is 1.00 SPT N=6 (1,1/2,2,1,1) (C) fine to coarse, sub-angular to sub-rounded. 2.00 - 3.00 В 2 SPT N=8 (1,1/2,2,2,2) (C) 3.00 - 4.00 В 3 3.00 SPT N=9 (2,2/3,2,2,2) (C) 4.00 - 5.00 В 4 4.00m - 6.00m: Driller described: 'wet' soils. SPT 4.00 N=13 (3,2/3,3,4,3) (C) 5.00 - 6.00 В 5 5.00 SPT N=28 (4,6/6,7,7,8) (C) 6.00 - 7.00 6.00 7.57 6 Stiff, brown red, slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. 6.00 SPT N=33 (7,7/8,8,9,8) (C) Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are sub-angular, limestone with dia 63-130mm. 7.00 6.57 7 End of Borehole at 7.000m 8 9 Chiselling Details: Hole Information: Groundwater: Tool Chisel Chisel Depth (m bgl) Struck (m | Rose to (m Sealed (m Hole Dia (mm) Casing Dia (mm) After Comment bgl) (mins) bgl) 200 None encountered. Equipment: Dando 2000. Shift Remarks GW (m bgl) Depth (m bgl) Shift Data:

Cable percussion borehole terminated at 7.0m bgl.

13/01/2022 08:00

13/01/2022 18:00

Dry

0.00

7.00

Start of shift.

End of borehole.

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP01**

Sheet 1 of 1

Project No.
Name:

Project No.
P21239

Co-ords:171822E - 70467N

Level: 16.60m OD

Date 11/01/2022

Location: Mahon, Cork

Dimensions (m):

Scale 1:25

Client: Estuary View Ent. Ltd

Depth: 3.90m BGL **Logged**

3.60

Samples & In Situ Testing Samples & In Situ Testing Depth (m) Type Results							3.90m BGL OD			
ke ker Kaler Kaler Kaler		1	-	Depth	Level	Legend	Stratum Description			
Stri Bac	Depth (m)	Туре	Results	(m)	(m OD)	Logona	(TOPSOIL) Soft to firm, brown, slightly sandy slightly			
				0.20	16.40		gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. (MADE GROUND) Soft to firm, brown, slightly sandy slightly gravelly CLAY with pottery fragments, blocks, timber and plastics. Sand is fine to coarse, Gravel is fine to coarse, sub-rounded to rounded.			
	0.70 - 1.50 0.70 - 1.50	B D		0.65	15.95		Soft to firm becoming stiff from 2.80m, brown, slightly sandy slightly gravelly CLAY with medium cobble content and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded. Boulders sub-rounded to rounded to rounded to rounded to rounded. (Assumed Natural).	1		
	1.50 - 2.50 1.50 - 2.50	B D						2		
	2.50 - 3.50 2.50 - 3.50	B D						i		
				3.90	12.70		End of Pit at 3.900m	2		
								5		
ability:	Good	1			1	Groundwa	ater: None encountered.			

Remarks: Trial pit terminated at 3.90m bgl on rock/ large boulders.

Backfill: Arisings.

Photographic Record

Number:

TP01

Project Project No Engineer

Bessborough SHD P21239 J.B. Barry & Partners

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP02**

Sheet 1 of 1

Project No. Project Bessboro SHD Name: P21239

Co-ords:171743E - 70394N **Level:** 13.04m OD

Date 10/01/2022

Backfill:

Arisings

Remarks: Trial pit terminated at 3.20m bgl due to collapsing walls.

Dimensions (m):

Scale 1:25

3.20

	Estuary View Ent. Ltd Samples & In Situ Testing Depth Level						Mahon, Cork						Dimensions (m):	1:25		
ent:	Estuary Vie	ew Ent. Ltd	d				Depth: Cogge 3.20m BGL OD	ed								
ğ ≣	Samp	les & In Situ	ı Testing	Depth	Level	Ī	-									
Backfill	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description									
	0.50 - 1.00 0.50 - 1.00	B D		0.30	12.74		(TOPSOIL) Soft to firm, brown, slightly sandy slightly gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. (MADE GROUND) Soft to firm, light brown, slightly sandy slightly gravelly SILT with medium cobble content, medium boulder content and pottery fragments. Sand is fine to coarse. Gravel is fine to coarse, sub-angular to rounded. Cobbles are angular to sub-rounded. Boulders are angular to sub-rounded.									
	1.20 - 2.30 1.20 - 2.30	B D		1.20	11.84		Soft, light purple brown, slightly gravelly silty SAND. Sand is fine to coarse. Gravel is fine to coarse, sub- angular to rounded.									
	2.30 - 3.20 2.30 - 3.20	B D		2.30	10.74		Soft to firm, purple brown, slightly sandy gravelly CLAY with medium cobble content and medium boulder content. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded. Boulders are sub-rounded to rounded.									
				3.20	9.84		End of Pit at 3.200m									

Photographic Record

Number: TP02 Project Project No Engineer

Bessborough SHD P21239 J.B. Barry & Partners

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP03**

Sheet 1 of 1

Project No.
Name:

Project No.
P21239

Co-ords:171737E - 70314N **Level:** 11.80m OD **Date** 11/01/2022

Location: Mahon, Cork

Dimensions (m):

Scale 1:25

Client: Estuary View Ent. Ltd

Remarks: Trial pit terminated 4.50m bgl, scheduled depth.

Depth: 4.50m BGL Logged OD

3.80

1.20

lient:				itu Toeting			4.50m BGL OD
Strike & Backfill	Depth (m)	Type	Results	Depth (m)	Level (m OD)	Legend	Stratum Description
	0.50 - 1.50 0.50 - 1.50	B D		0.35	11.45		(TOPSOIL) Soft, dark brown, slightly sandy slightly gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to coarse, sub-angular to rounded. (MADE GROUND) Soft to firm, purple brown, slightly sandy gravelly CLAY with medium cobble content and rare pottery and glass fragments. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.
	1.50 - 2.50 1.50 - 2.50	B D		1.10	10.70		(ASSUMED NATURAL) Soft to firm, purple brown, slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.
	2.50 - 3.50 2.50 - 3.50	B D					
	3.50 - 4.50 3.50 - 4.50	B D					
				4.50	7.30		End of Pit at 4.500m
- 1		1				1	

Photographic Record

Number:

TP03

Project Project No Engineer

Bessborough SHD P21239 J.B. Barry & Partners

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP04**

Sheet 1 of 1

Project No.
Name:

Project No.
P21239

Co-ords:172027E - 70362N Level: 12.35m OD

3.60

Date 13/01/2022 Scale

Client: Estuary View Ent. Ltd

Location: Mahon, Cork

Backfill:

Ari<u>sings</u>

Remarks: Trial pit terminated at 4.50m bgl, scheduled depth.

Dimensions (m):

Depth:

1:25 Logged

∞ =	Estuary View Ent. Ltd Samples & In Situ Testing						4.50m BGL OD	_
Strike & Backfill	Depth (m)	les & In Si	tu Testing Results	Depth (m)	Level (m OD)	Legend	Stratum Description	
0,2	0.50 - 1.50 0.50 - 1.50	B D		0.30	12.05		(TOPSOIL) Soft to firm, brown, slightly sandy slightly gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to medium, sub-angular to sub-rounded. (MADE GROUND): Soft, brown slightly slightly gravelly SAND with plastic waste. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded.	_
				0.70	11.65		(ASSUMED NATURAL): Soft, brown, slightly silty slightly gravelly SAND. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded.	
	1.50 - 2.50 1.50 - 2.50	B D		1.50	10.85		Soft to firm, slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.	
	2.50 - 3.50 2.50 - 3.50	B D						
	3.50 - 4.50 3.50 - 4.50	B D						
				4.50	7.85		End of Pit at 4.500m	

Photographic Record

Number:

Project Project No Engineer TP04

Bessborough SHD P21239 J.B. Barry & Partners

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP05**

Sheet 1 of 1

Project No. Project Bessboro SHD Name: 21239

Co-ords:172034E - 70303N _evel:

12.21m OD

20

Date 14/01/2022

Location: Mahon, Cork

Dimensions (m):

Depth:

4.50m BGL

4.10

Scale 1:25 Logged

5

Client: Estuary View Ent. Ltd

Water Strike & Backfill Samples & In Situ Testing Depth Level Legend **Stratum Description** (m OD) (m) Depth (m) Results Type (TOPSOIL) Soft to firm, brown, slightly sandy slightly gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to medium, sub-angular to subrounded. 0.30 11.91 (MADE GROUND) Soft to firm, brown orange, slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. 0.70 - 1.50 0.70 11.51 Firm to stiff, purple brown, slightly sandy slightly gravelly CLAY with medium cobble content and low boulder content. Sand is fine to coarse. Gravel is fine to 0.70 - 1.50coarse, sub-rounded to rounded. Cobbles are subrounded to rounded. Boulders are sub-rounded to 1 rounded. (Assumed Natural). 1.50 - 2.50 В 1.50 - 2.50 2 2.50 - 3.50 В 2.50 - 3.50 3 3.50 - 4.50 3.50 - 4.50 4 4.50 7.71 End of Pit at 4.500m

Stability: Good

Plant: 14T track machine

Backfill: Arisings Groundwater: 3.90m: Slow rate of flow

Remarks: Trial pit terminated at 4.50m bgl, scheduled depth.

Photographic Record

Number:

TP05

Project Project No Engineer

Bessborough SHD P21239 J.B. Barry & Partners

pgl _p	riority otechnical				Tel: Fax:	021 463 [,] 021 463		Trial Pi TP0 Sheet 1)6	
Project					ct No.		Co-ords :171941E - 70338N	Dat		
Name:	Bessboro Sh	HD		P212			Level: 13.69m OD	12/01/2		
Location	: Mahon, Co	rk		I			Dimensions (m):		Scale 1:25	
Client:	Estuary Vie	ew Ent. Ltd	d				Depth:	Logg OD	ed	
ter ce & kfill	Samp	les & In Situ	u Testing	Depth	Level	ļ				
Water Strike & Backfill	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description			
8				0.15	13.54 13.39		(TOPSOIL) Soft to firm, slightly sandy slightl SILT with grass and rootlets. (MADE GROUND) Firm to stiff, light blue gre sandy gravelly CLAY. Sand is fine to coarse, fine to coarse, sub-angular. Concrete Slab - drain/sewer access cover. End of Pit at 0.300m	y, slightly	2 -	
									4 -	

5 -

Stability: Good
Plant: 14T track machine
Backfill: Arisings.

Remarks: Trial pit terminated at 0.30m bgl, due to encountering a concrete slab covering an apparent un-used drain. Pit relocated.

Photographic Record

Number:

TP06

Project Project No Engineer

Bessborough SHD P21239 J.B. Barry & Partners

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **TP06A**Sheet 1 of 1

Project No.
Name: Project No.
P21239

Co-ords:171945E - 70339N

3.80

Date 12/01/2022

Location: Mahon, Cork

Level: 13.61m OD

Dimensions (m):

Scale 1:25

Client: Estuary View Ent. Ltd

Depth: 4.60m BGL Logged

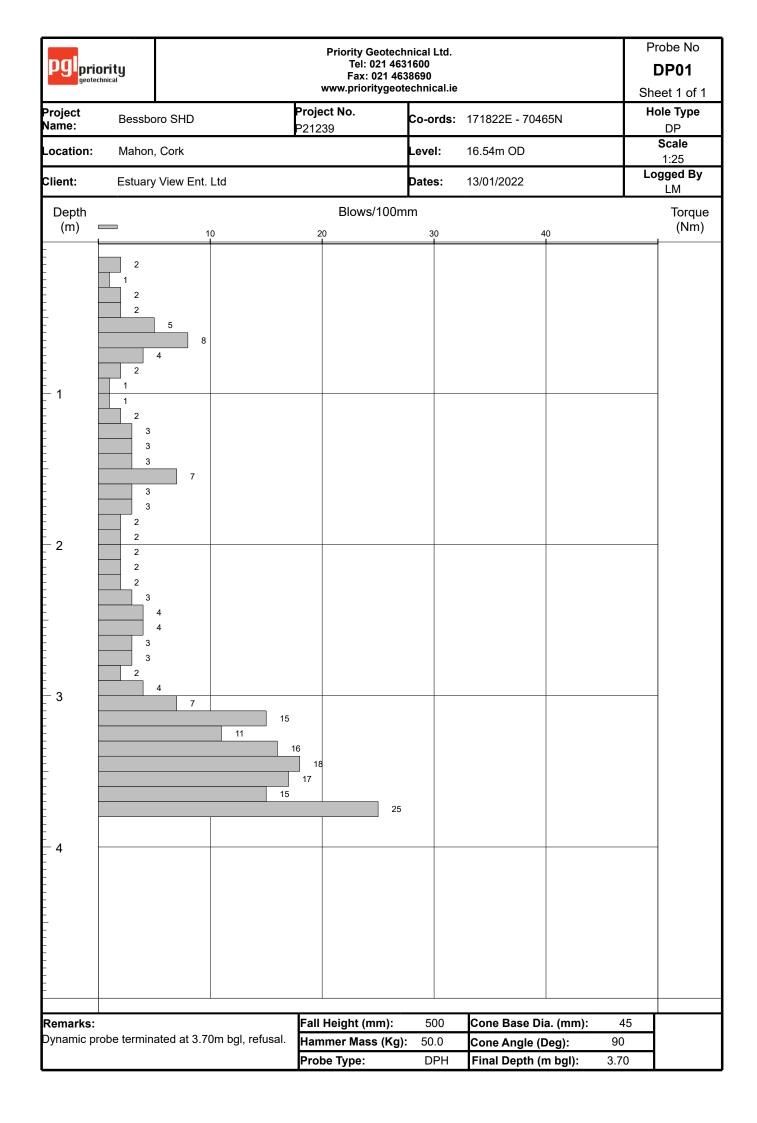
& ≣	Samples & In Situ Testing			Donth	Lovel		4.60m BGL OD Stratum Description				
Strike & Backfill	Depth (m)	Туре	Results	Depth (m)	Level (m OD)	Legend	Stratum Description				
	0.50 - 1.45 B 0.50 - 1.45 D				13.51		(TOPSOIL) Soft to firm, slightly sandy slightly gravelly SILT with grass and rootlets. (MADE GROUND) Soft to firm, slightly sandy slightly gravelly CLAY with low cobble content and waste (pottery fragments, glass, plastics). Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.	1			
	1.50 - 2.50 1.50 - 2.50	B D		1.45	12.16		Soft to firm, slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.				
	2.50 - 3.50 2.50 - 3.50	B D									
	3.50 - 4.50 3.50 - 4.50	B D									
				4.60	9.01		End of Pit at 4.600m				

Remarks: Trial pit terminated at 4.60m bgl, scheduled depth.

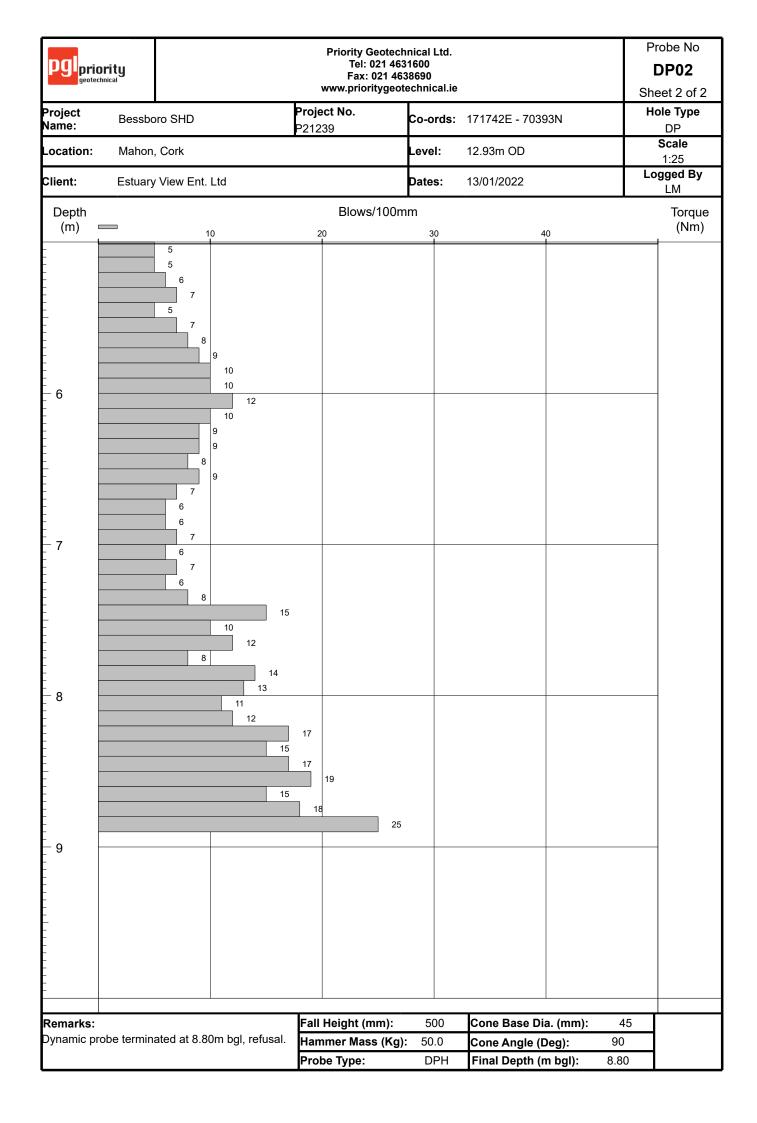
Backfill:

Ari<u>sings</u>

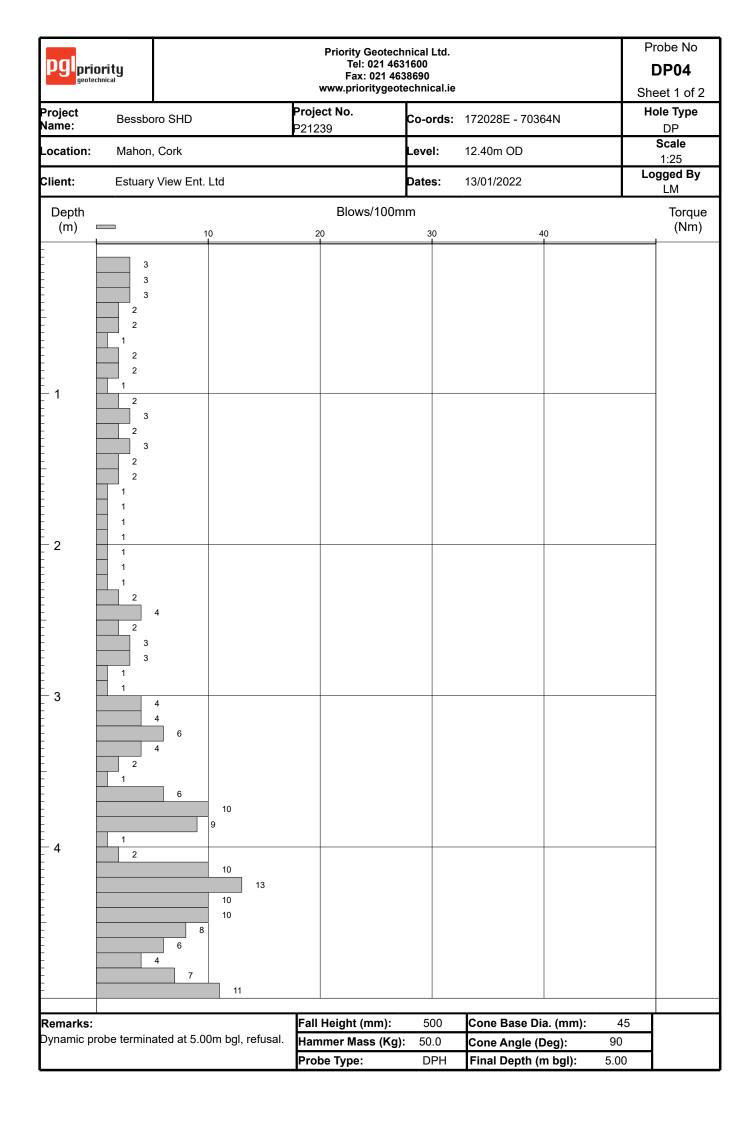
Photographic Record

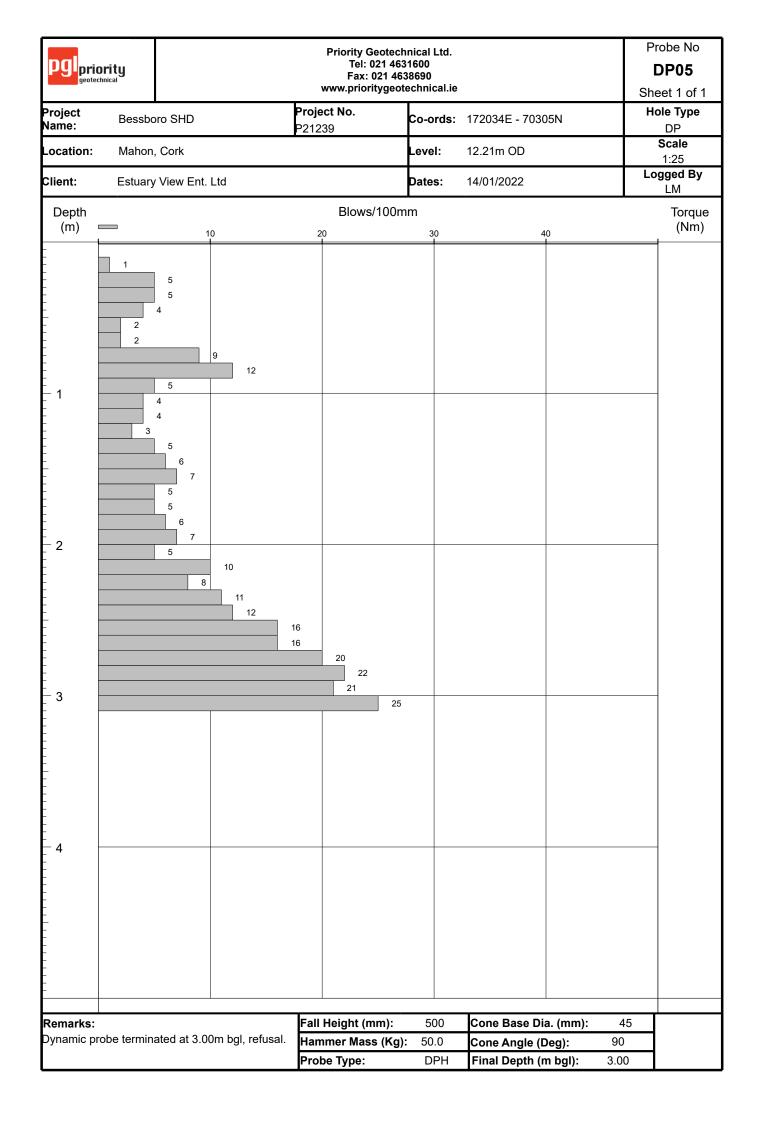


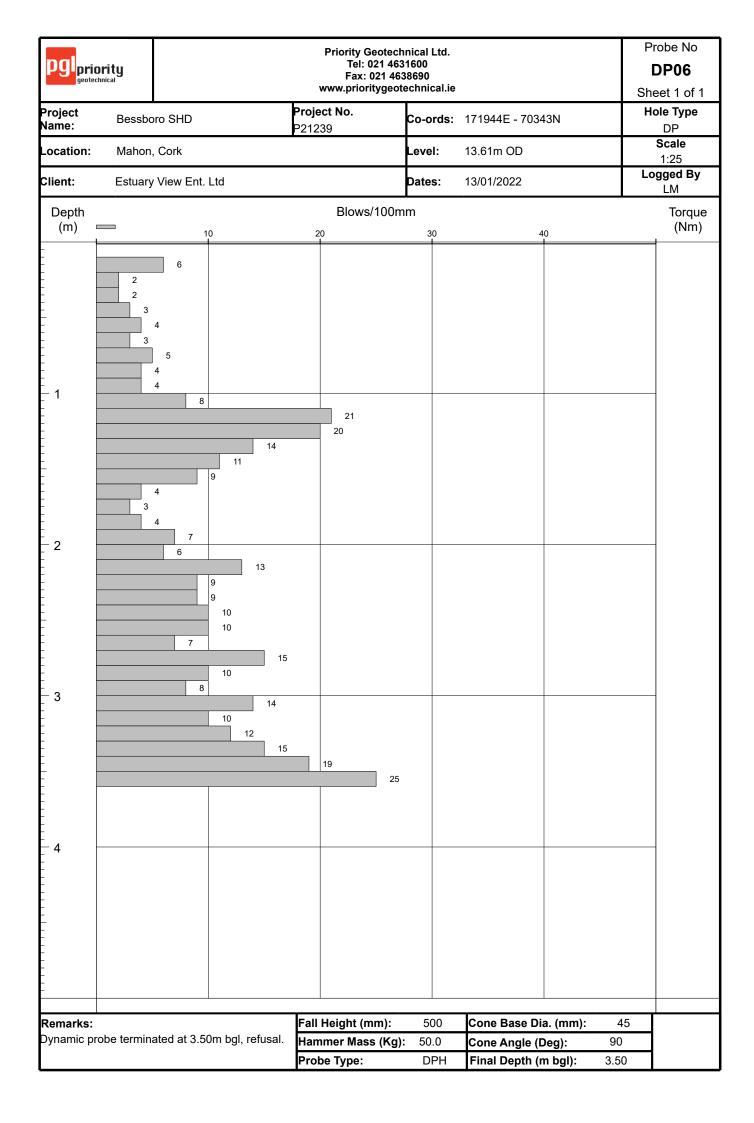
Number:


TP06A

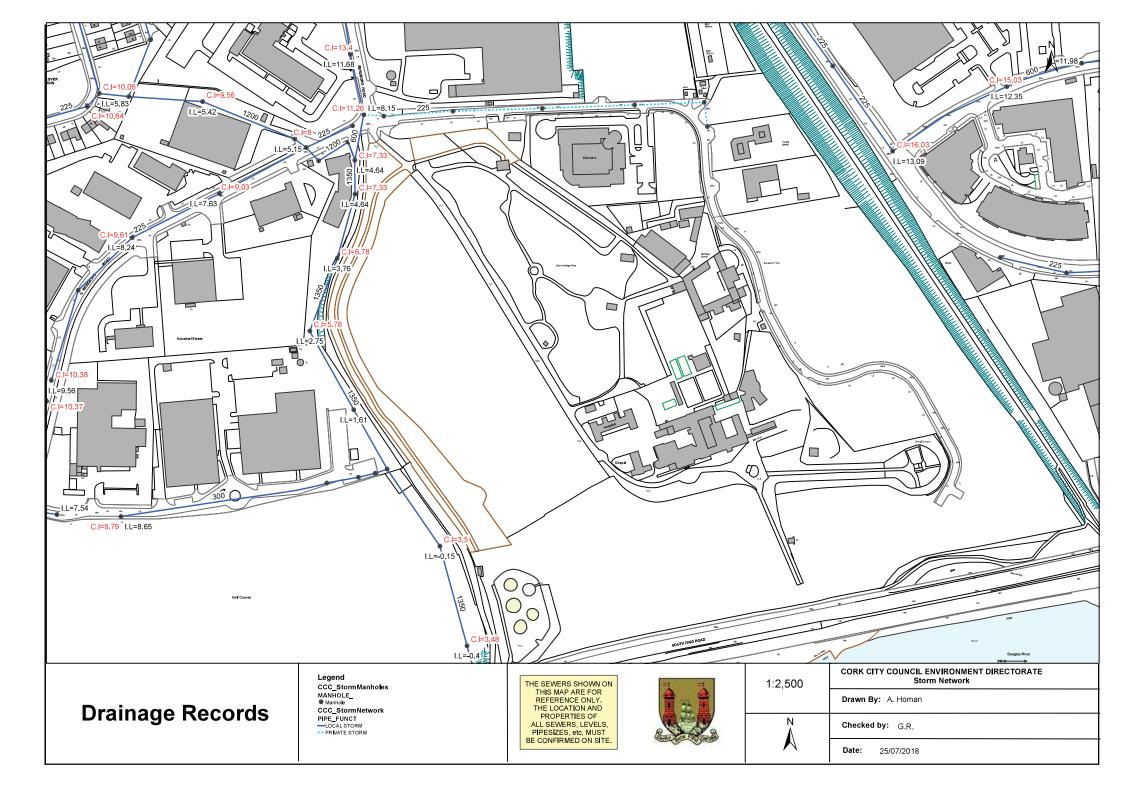
Project Project No Engineer


Bessborough SHD P21239 J.B. Barry & Partners


pgl _{prio}	rity _{Inical}		Tel: 02 Fax: 02	otechnical Ltd. 1 4631600 21 4638690 ygeotechnical.ie			Probe No DP02 Sheet 1 of 2
Project Name:	Bessboro SHD		Project No. P21239	Co-ords:	171742E - 70393	BN	Hole Type DP
Location:	Mahon, Cork			Level:	12.93m OD		Scale 1:25
Client:	Estuary View Er	nt. Ltd		Dates:		Logged By LM	
Depth (m) =			Blows/1	l00mm			Torque (Nm)
2	5 5 6 4 3 2 3 5 4 5 3 4	8 8 8 8 11 11	20	30			
	5 5						
Remarks:	6 obe terminated at 8	80m hal refusal	Fall Height (mr		Cone Base Dia		
ynanic pro	obe terminated at 8	.ooni byi, relusal.	Hammer Mass Probe Type:	(Kg): 50.0	Cone Angle (Do Final Depth (m		_



			Priority Geotechnical Ltd.							
pglpric	ority chnical			1 4631600 1 4638690		D	P03			
geotec				geotechnical.ie		Shee	et 1 of 1			
Project Name:	Bessbo	oro SHD	Project No.	Co-ords:	171736E - 70312N		e Type DP			
Location:	Mahon	, Cork	P21239	Level:	11.53m OD	S	6 cale 1:25			
Client:	Estuary	/ View Ent. Ltd		Dates:	13/01/2022	Log	ged By			
							LM _			
Depth (m)		10	Blows/1	00mm 30	40		Torque (Nm)			
-			20	30	+0					
-	2	5								
-	2									
-	1	7								
- - -		11								
- - -		9 11								
<u>-</u> 1		8								
- · - -		8 13								
-		10								
- -		9								
-		13								
-		9								
		9 11								
2		10								
			15							
-		14								
- - -			15							
-		11								
- -				25						
- - 3										
- "										
- - -										
- - -										
- - -										
_ _ _										
-										
_ 4										
-										
-										
-										
-										
_ _										
Remarks:			Fall Height (mm	n): 500	Cone Base Dia. (mm):	45				
	obe termin	ated at 2.70m bgl, refus		-	Cone Angle (Deg):	90				
			Probe Type:	DPH	Final Depth (m bgl):	2.70				


				Prior	Priority Geotechnical Ltd.					
pgi prio geotech	rity ^{nnical}			ı	Tel: 021 4631 Fax: 021 4638	8690)P04
					prioritygeote	chnical.ie			+	et 2 of 2
Project Name:	Bessbo	oro SHD		Project No P21239). k	Co-ords:	172028E - 7036	64N	Ho	le Type DP
Location:	Mahon	, Cork				_evel:	12.40m OD			Scale
Client:		View Ent.	l td		Dates: 13/01/2022					1:25 gged By
	Listuary	VIEW LIII.	Liu	<u> </u>						LM
Depth (m) □			2		Blows/100mm 20 30 40					Torque (Nm)
<u> </u>		1	J	20	25	30	4	0		
-										
- - -										
- - -										
6										
-										
- - -										
- -										
-										
-										
-										
- 7 -										
- - -										
- - -										
-										
- - -										
-										
- 8										
-										
-										
- - -										
- 9 -										
 - -										
-										
-										
-										
-										
-										
Remarks:				Fall Heig	ht (mm):	500	Cone Base Di	a. (mm):	45	
Dynamic pro	be termin	ated at 5.00)m bgl, refusal.	-	Mass (Kg):	50.0	Cone Angle (D			
				Probe Ty	pe:	DPH	Final Depth (r	n bgl): 5.0	00	

CORK CITY COUNCIL - EXISTING STORMWATER NETWORK

HR WALLINGFORD - GREENFIELD RUNOFF ESTIMATION

Calculated by:

Diarmuid O'Brien

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Site name:	Phase	1 - Bes	sboro S	SHD		L	.atitude:	51.88489° N				
Site location:	Bessb	oro, Bla	ckrock,	Cork.		L	ongitude:	8.40755° W				
in line with Environmen SC030219 (2013), the	f the gree at Agency SuDS M rmation o	enfield rund guidance Manual C7 on greenfie	off rates e "Rainfa 53 (Ciria eld runof	that are use Il runoff man , 2015) and	agement for the non-sta	atutory standards for SuDS	Reference: Date:	1191625915 Feb 16 2022 16:07				
Runoff estimation	n appı	roach	IH124									
Site characterist	ics					Notes						
Total site area (ha):	1.53					(1) Is Q _{BAR} < 2.0	1/s/ha?					
Methodology						(1) 13 QBAR < 2.0	, ,, 3, 11a :					
Q _{BAR} estimation m	ethod:	Calcu	ılate fro	m SPR ar	d SAAR	When Q _{BAR} is <	2.0 l/s/ha the	en limiting discharge rates are set				
SPR estimation me	ethod:	Calcu	late fro	m SOIL ty	pe	at 2.0 l/s/ha.						
Soil characterist	ics	Defaul	t	Edited								
SOIL type:		4		4		(2) Are flow rate	s < 5.0 l/s?					
HOST class:	ı	N/A		N/A) A (I) (I)	1 11	501/				
SPR/SPRHOST:	PR/SPRHOST: 0.47 0.47							n 5.0 l/s consent for discharge is ge from vegetation and other				
Hydrological cha	aracter	ristics	De	fault	Edite	· ·		consent flow rates may be set dressed by using appropriate				
SAAR (mm):			1106		1106	drainage elemer	_	areased by using appropriate				
Hydrological region	n:		13		13	(3) Is SPR/SPRF	1061 ~ U 33	,				
Growth curve facto	or 1 yea	r: [0.85		0.85	(3) is 3FN/3FNF	1031 \(\) 0.3!					
Growth curve facto	or 30 ye	ars:	1.65		1.65			e low enough the use of				
Growth curve facto	or 100 y	ears:	1.95		1.95	soakaways to a preferred for dis	_	e offsite would normally be ce water runoff.				
Growth curve facto	or 200 y	ears:	2.15		2.15							
r												
Greenfield runof	f rates	De	efault	Ed	lited							
Q _{BAR} (I/s):		12.6	i1	12.6	1							
1 in 1 year (l/s):		10.7	2	10.7	2							
1 in 30 years (l/s):		20.8	1	20.8	1							
1 in 100 year (l/s):		24.6		24.6								
1 in 200 years (l/s): 27.12 27.12				2								

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

Ok, I agree

More

CORK CITY COUNCIL CORRESPONDENCE

Figure 3. – Status of Taken in Charge / Not in Charge Roads in the Vicinity of the Bessboro SHD Site.

3.4.14.2 Sustainable Urban Drainage Systems (SuDS) & Stormwater:

The report of the Senior Executive Engineer from the Drainage Section states that:

"I note the applicant's proposal to use Q100 instead of Qbar as the greenfield run-off rate. This is acceptable, considering the proximity of the development to outfall to the estuary and the size of the existing outfall pipe at 1350mm. This approach is in line with that taken on other previously proposed developments within the Bessboro site. I have checked the Q100 estimate against my own estimate from the uksuds.com website and I am satisfied it is accurate.

I am pleased to see interception storage being provided for up to 5mm of rainfall...this will have a positive impact on downstream water quality, avoiding the "first flush" which would otherwise be reliant solely on an oil interceptor.

I am pleased to see the number of SuDS measures proposed and would request that design / drawing details are submitted as part of the application for each of the measures proposed. I would request in particular details of how the bio-retention areas are intention to function.

I note from Section 4.3.4 of the Infrastructure Report that it is proposed to discharge surface water from the car park via an interceptor to the storm line (as shown on drawing 21207-JBB-PH1-XX-DR-C-04001). However, based on a review of drawing SB-2020-107-404 it is apparent that this is effectively a "basement carpark", insofar as it is enclosed. As such, in accordance with Section 3.18 of the Greater Dublin Regional Code of Practice for Drainage Works, all drainage from basement areas shall be pumped to ground level prior to discharging by gravity to the public foul sewerage system. Basement car parks must be discharged to the foul system via a petrol/oil interceptor. Access to basement car parks shall be designed such that surface water run-off from the surrounding paved areas cannot flow down the ramp".

3.4.14.3 Flooding:

The report of the Senior Executive Engineer from the Drainage Section states that "I am satisfied with the Applicant's conclusion that the site is located in Flood Zone 'C' and hence, does not merit further assessment".

SURFACE WATER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd							
Classon House	20217 - Bessborough SHD						
Dundrum Business Park	(The Meadows)						
Dublin 14	Storm Sewer	Micro					
Date 18/02/2022 17:33	Designed by DOB						
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage					
Innovyze	Network 2020.1	<u>'</u>					

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland
Return Period (years) 2 PIMP (%) 100
M5-60 (mm) 18.800 Add Flow / Climate Change (%) 0
Ratio R 0.250 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 4.000
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	51.087	0.511	100.0	0.115	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.000 S2.001	30.932 31.021		100.1 102.7	0.175 0.039	4.00		0.600	0		Pipe/Conduit Pipe/Conduit	0
S1.002	36.395 9.219 34.183	0.061	149.8 151.1 60.3	0.120 0.010 0.045	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	6
	31.863 39.599 67.106	0.200	55.9 198.0 162.9	0.042 0.065 0.118	4.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	1
	14.780 35.342 13.916 5.732	0.832 0.257	46.0 42.5 54.1 56.2	0.020 0.038 0.000 0.000	0.00 0.00 0.00 0.00	3.9	0.600	0 0 0	300 300	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	999

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	50.00	4.65	12.830	0.115	0.0	0.0	0.0	1.31	52.0	15.6
S2.000	50.00	4.39	12.670	0.175	0.0	0.0	0.0	1.31	52.0	23.7
S2.001	50.00	4.80	12.361	0.214	0.0	0.0	0.0	1.29	51.3	29.0
S1.001	50.00	5.27	11.984	0.449	0.0	0.0	0.0	1.28	90.6	60.8
S1.002	50.00	5.39	11.741	0.459	0.0	0.0	0.0	1.28	90.2	62.2
S1.003	50.00	5.67	11.680	0.505	0.0	0.0	0.0	2.03	143.4	68.3
S3.000	50.00	4.30	12.370	0.042	0.0	0.0	0.0	1.75	69.7	5.7
S3.001	50.00	5.02	11.800	0.107	0.0	0.0	0.0	0.93	36.8	14.5
S3.002	49.96	6.11	11.600	0.225	0.0	0.0	0.0	1.02	40.6	30.5
S1.004	49.63	6.22	11.113	0.750	0.0	0.0	0.0	2.32	164.2	100.8
S1.005	48.89	6.46	10.792	0.788	3.9	0.0	0.0	2.42	171.0	108.2
S1.006	48.57	6.57	9.960	0.788	3.9	0.0	0.0	2.14	151.4	108.2
S1.007	48.44	6.61	9.703	0.788	3.9	0.0	0.0	2.10	148.6	108.2

©1982-2020 Innovyze

J.B. Barry & Partners Ltd	-						
Classon House	20217 - Bessborough SHD						
Dundrum Business Park	(The Meadows)						
Dublin 14	Storm Sewer	Micro					
Date 18/02/2022 17:33	Designed by DOB						
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage					
Innovyze	Network 2020.1	<u>'</u>					

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.008	44.748	0.050	895.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	•
S4.000	16.604	0.166	100.0	0.026	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S4.001	19.498	0.134	145.5	0.017	0.00	0.0	0.600	0	225	Pipe/Conduit	Ō
S4.002	10.100	0.300	33.7	0.015	0.00	0.0	0.600	0	225	Pipe/Conduit	<u>-</u>
S4.003	16.086	0.100	160.9	0.010	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S4.004	33.680	1.020	33.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S4.005	2.186	0.124	17.6	0.000	0.00	3.8	0.600	0	225	Pipe/Conduit	ď
S1.009	34.516	0.181	190.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	₫*
S1.010	17.091	0.087	196.4	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	Ğ
S1.011	57.377	0.284	202.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.012	41.156	0.206	199.8	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.013	36.345	0.182	199.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.014	63.431	1.321	48.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.015	29.911	0.602	49.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.016	94.491	3.780	25.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul		Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.008	45.72	7.62	9.376	0.788	3.9	0.0	0.0	0.74	160.3	108.2
S4.000	50.00	4.21	11.170	0.026	0.0	0.0	0.0	1.31	52.0	3.6
S4.001	50.00	4.51	11.004	0.043	0.0	0.0	0.0	1.08	43.0	5.9
S4.002	50.00	4.59	10.870	0.058	0.0	0.0	0.0	2.26	90.0	7.8
S4.003	50.00	4.85	10.570	0.068	0.0	0.0	0.0	1.03	40.9	9.2
S4.004	50.00	5.09	10.470	0.068	0.0	0.0	0.0	2.28	90.8	9.2
S4.005	50.00	5.10	9.450	0.068	3.8	0.0	0.0	3.13	124.5	13.0
S1.009	50.00	4.61	9.326	0.000	24.6	0.0	0.0	0.94	37.5	24.6
S1.010	50.00	4.92	9.145	0.000	24.6	0.0	0.0	0.93	36.9	24.6
S1.011	50.00	5.96	9.058	0.000	24.6	0.0	0.0	0.92	36.4	24.6
S1.012	48.18	6.70	8.774	0.000	24.6	0.0	0.0	0.92	36.6	24.6
S1.013	46.38	7.36	8.568	0.000	24.6	0.0	0.0	0.92	36.6	24.6
S1.014	44.99	7.92	8.386	0.000	24.6	0.0	0.0	1.89	75.3	24.6
S1.015	44.35	8.19	7.065	0.000	24.6	0.0	0.0	1.86	74.0	24.6
S1.016	43.02	8.79	6.463	0.000	24.6	0.0	0.0	2.63	104.5	24.6

Free Flowing Outfall Details for Storm

Outfall	Outfall (C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
S1.016	S.A29	4.390	2.683	0.000	0	0

J.B. Barry & Partners Ltd	Page 3	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	praniacie
Innovyze	Network 2020.1	<u> </u>

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S.A21, DS/PN: S1.009, Volume (m³): 14.1

Unit Reference MD-SHE-0208-2460-1680-2460 Design Head (m) 1.680 Design Flow (1/s) 24.6 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Diameter (mm) 208 Invert Level (m) 9.326 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1800

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.680	24.6	Kick-Flo®	1.086	20.0
	Flush-Flo™	0.497	24.6	Mean Flow over Head Range	_	21.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow $(1/s)$								
0.100	7.1	0.800	23.6	2.000	26.7	4.000	37.3	7.000	48.9
0.200	20.0	1.000	21.7	2.200	28.0	4.500	39.5	7.500	50.5
0.300	23.5	1.200	20.9	2.400	29.2	5.000	41.5	8.000	52.1
0.400	24.4	1.400	22.5	2.600	30.3	5.500	43.5	8.500	53.7
0.500	24.6	1.600	24.0	3.000	32.5	6.000	45.4	9.000	55.2
0.600	24.4	1.800	25.4	3.500	35.0	6.500	47.2	9.500	56.7

J.B. Barry & Partners Ltd	Page 4	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Mirro
Date 18/02/2022 17:33	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	<u> </u>

Storage Structures for Storm

Cellular Storage Manhole: S.A21, DS/PN: S1.009

Invert Level (m) 9.326 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) Inf.	Area (m²)
0.000	284.0	0.0	0.900	284.0	0.0	1.681	0.0	0.0
0.100	284.0	0.0	1.000	284.0	0.0	1.900	0.0	0.0
0.200	284.0	0.0	1.100	284.0	0.0	2.000	0.0	0.0
0.300	284.0	0.0	1.200	284.0	0.0	2.100	0.0	0.0
0.400	284.0	0.0	1.300	284.0	0.0	2.200	0.0	0.0
0.500	284.0	0.0	1.400	284.0	0.0	2.300	0.0	0.0
0.600	284.0	0.0	1.500	284.0	0.0	2.400	0.0	0.0
0.700	284.0	0.0	1.600	284.0	0.0	2.500	0.0	0.0
0.800	284.0	0.0	1.680	284.0	0.0			

J.B. Barry & Partners Ltd	Page 5	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Dialilade
Innovyze	Network 2020.1	<u>'</u>

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Climate Change (%) 10, 10, 10

PN	US/MH Name	s	torm		Climate Change		t (X) harge	First (Y) Flood	First (Z)	Water Level (m)	Surcharged Depth (m)
-1 000					-	/ . =	_				
S1.000	S.A1		Winter	1		100/15				12.920	-0.135
S2.000	S.A2		Winter	1	+10%		Summer			12.786	-0.109
S2.001	S.A3		Winter	1	+10%		Summer			12.491	-0.095
S1.001	S.A4		Winter	1	+10%		Summer			12.174	-0.110
S1.002	S.A5		Winter	1	+10%		Summer			11.978	-0.063
S1.003	S.A6		Winter	1	+10%		Summer			11.829	-0.151
S3.000	S.A7		Winter	1	+10%	,				12.416	-0.179
s3.001	S.A8		Winter	1	+10%		Summer			11.898	-0.127
s3.002	S.A9		Winter	1	+10%		Summer			11.736	-0.089
S1.004			Winter	1	+10%		Summer			11.294	-0.119
S1.005			Winter	1	+10%		Summer			10.967	-0.125
S1.006			Winter	1	+10%		Summer			10.206	-0.054
S1.007	S.A13	15	Winter	1	+10%		Summer			10.042	0.039
S1.008	S.A14	15	Winter	1	+10%	30/60	Summer			9.702	-0.199
S4.000	S.A15	15	Summer	1	+10%					11.214	-0.181
S4.001	S.A16	15	Winter	1	+10%					11.062	-0.167
S4.002	S.A17	15	Winter	1	+10%					10.918	-0.177
S4.003	S.A18	15	Winter	1	+10%					10.644	-0.151
S4.004	S.A19	15	Winter	1	+10%					10.518	-0.177
S4.005	S.A20	180	Winter	1	+10%	30/15	Summer			9.675	0.000
S1.009	S.A21	180	Winter	1	+10%	1/30	Winter			9.673	0.122
S1.010	S.A22	180	Winter	1	+10%					9.286	-0.084
S1.011	S.A23	180	Winter	1	+10%					9.193	-0.090
S1.012	S.A24	180	Winter	1	+10%					8.909	-0.090
S1.013	S.A25	180	Winter	1	+10%					8.704	-0.089
S1.014	S.A26	180	Winter	1	+10%					8.473	-0.138
S1.015	S.A27	180	Winter	1	+10%					7.155	-0.135
S1.016	S.A28	180	Winter	1	+10%					6.535	-0.152

©1982-2020 Innovyze

J.B. Barry & Partners Ltd	Page 6	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Dialilade
Innovyze	Network 2020.1	-

	US/MH	Flooded	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S.A1	0.000	0.34			16.9	OK	
S2.000	S.A2	0.000				25.5	OK	
S2.001	S.A3	0.000	0.62			29.6	OK	
S1.001	S.A4	0.000	0.71			59.6	OK	
S1.002	S.A5	0.000	0.97			60.1	OK	
S1.003	S.A6	0.000	0.49			65.0	OK	
S3.000	S.A7	0.000	0.09			6.2	OK	
S3.001	S.A8	0.000	0.38			13.4	OK	
S3.002	S.A9	0.000	0.65			25.6	OK	
S1.004	S.A10	0.000	0.67			92.3	OK	
S1.005	S.A11	0.000	0.63			99.5	OK	
S1.006	S.A12	0.000	0.79			99.5	OK	
S1.007	S.A13	0.000	1.24			99.3	SURCHARGED	
S1.008	S.A14	0.000	0.69			97.0	OK	
S4.000	S.A15	0.000	0.08			3.9	OK	
S4.001		0.000	0.15			5.8	OK	
S4.002	S.A17	0.000	0.10			7.5	OK	
S4.003		0.000	0.24			8.6	OK	
S4.004		0.000	0.10			8.6	OK	
S4.005		0.000	0.13			6.6	OK	
S1.009		0.000	0.66		96		SURCHARGED	
S1.010		0.000	0.71			23.4	OK	
S1.011		0.000	0.67			23.4	OK	
S1.012		0.000	0.67			23.4	OK	
S1.013		0.000	0.68			23.4	OK	
S1.014		0.000	0.32			23.4	OK	
S1.015		0.000	0.34			23.4	OK	
S1.016	S.A28	0.000	0.23			23.4	OK	

J.B. Barry & Partners Ltd		Page 7
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Dialilade
Innovyze	Network 2020.1	<u> </u>

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Climate Change (%) 10, 10, 10

PN	US/MH Name	s	torm		Climate Change	First	t (X)	First (Y)	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
	1101110	J		101100	onunge	54201	iurge	11000	0101110#	1100.	(,	(,
S1.000	S.A1	15	Winter	30	+10%	100/15	Summer				12.977	-0.078
S2.000	S.A2	15	Winter	30	+10%	30/15	Summer				13.300	0.405
S2.001	S.A3	15	Winter	30	+10%	30/15	Summer				13.052	0.466
S1.001	S.A4	15	Winter	30	+10%	30/15	Summer				12.735	0.451
S1.002	S.A5	15	Winter	30	+10%	30/15	Summer				12.415	0.374
S1.003	S.A6	15	Winter	30	+10%	30/15	Summer				12.274	0.294
S3.000	S.A7	15	Winter	30	+10%	100/15	Summer				12.448	-0.147
S3.001	S.A8	15	Winter	30	+10%	30/15	Summer				12.425	0.400
S3.002	S.A9	15	Winter	30	+10%	30/15	Summer				12.358	0.533
S1.004	S.A10	15	Winter	30	+10%	30/15	Summer				11.930	0.517
S1.005	S.A11	15	Winter	30	+10%	30/15	Summer				11.550	0.458
S1.006	S.A12	15	Winter	30	+10%	30/15	Summer				10.699	0.439
S1.007	S.A13	15	Winter	30	+10%	1/15	Summer				10.296	0.293
S1.008	S.A14	240	Winter	30	+10%	30/60	Summer				10.126	0.225
S4.000	S.A15	15	Winter	30	+10%						11.235	-0.160
S4.001	S.A16	15	Summer	30	+10%						11.098	-0.131
S4.002	S.A17	15	Winter	30	+10%						10.946	-0.149
S4.003	S.A18	15	Winter	30	+10%						10.697	-0.098
S4.004	S.A19	15	Winter	30	+10%						10.547	-0.148
S4.005	S.A20	240	Winter	30	+10%	30/15	Summer				10.122	0.447
S1.009	S.A21	240	Winter	30	+10%	1/30	Winter				10.120	0.569
S1.010	S.A22	480	Summer	30	+10%						9.290	-0.080
S1.011	S.A23	600	Winter	30	+10%						9.197	-0.086
S1.012	S.A24	480	Winter	30	+10%						8.914	-0.085
S1.013	S.A25	480	Winter	30	+10%						8.708	-0.085
S1.014	S.A26	360	Winter	30	+10%						8.476	-0.135
S1.015	S.A27	720	Summer	30	+10%						7.157	-0.133
S1.016	S.A28	720	Summer	30	+10%						6.537	-0.151

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Dialilade
Innovyze	Network 2020.1	-

	US/MH	Flooded	Elen /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
FIN	Name	(111)	cap.	(1/5)	(milis)	(1/5)	Scacus	Exceeded
S1.000	S.A1	0.000	0.74			36.9	OK	
S2.000	S.A2	0.000	0.92			44.9	SURCHARGED	
S2.001	S.A3	0.000	1.08			51.8	SURCHARGED	
S1.001	S.A4	0.000	1.34			112.1	SURCHARGED	
S1.002	S.A5	0.000	1.74			107.9	SURCHARGED	
S1.003	S.A6	0.000	0.86			113.8	SURCHARGED	
S3.000	S.A7	0.000	0.21			13.7	OK	
S3.001	S.A8	0.000	0.68			23.9	SURCHARGED	
S3.002	S.A9	0.000	1.25			49.1	SURCHARGED	
S1.004	S.A10	0.000	1.11			152.3	SURCHARGED	
S1.005	S.A11	0.000	1.01			158.9	SURCHARGED	
S1.006	S.A12	0.000	1.26			157.4	SURCHARGED	
S1.007	S.A13	0.000	1.96			157.0	SURCHARGED	
S1.008	S.A14	0.000	0.44			62.3	SURCHARGED	
S4.000	S.A15	0.000	0.19			8.7	OK	
S4.001	S.A16	0.000	0.36			14.1	OK	
S4.002	S.A17	0.000	0.25			18.8	OK	
S4.003	S.A18	0.000	0.59			21.5	OK	
S4.004	S.A19	0.000	0.25			21.7	OK	
S4.005	S.A20	0.000	0.17			8.5	SURCHARGED	
S1.009	S.A21	0.000	0.69		160	24.5	SURCHARGED	
S1.010	S.A22	0.000	0.74			24.5	OK	
S1.011	S.A23	0.000	0.70			24.5	OK	
S1.012	S.A24	0.000	0.70			24.5	OK	
S1.013	S.A25	0.000	0.71			24.5	OK	
S1.014	S.A26	0.000	0.34			24.5	OK	
S1.015	S.A27	0.000	0.35			24.5	OK	
S1.016	S.A28	0.000	0.24			24.5	OK	

J.B. Barry & Partners Ltd		Page 9
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	pramacje
Innovyze	Network 2020.1	<u> </u>

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Climate Change (%) 10, 10, 10

											Water	Surcharged
	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level	Depth
PN	Name	St	corm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)	(m)
S1.000	S.A1	15	Winter	100	+10%	100/15	Summer				13.660	0.605
S2.000	S.A2		Winter	100	+10%		Summer				14.089	1.194
S2.001	S.A3		Winter	100	+10%		Summer				13.863	1.277
S1.001	S.A4		Winter	100	+10%		Summer				13.532	1.248
S1.002	S.A5		Winter	100	+10%		Summer				13.151	1.110
S1.003	S.A6		Winter	100	+10%		Summer				12.968	0.988
s3.000	S.A7		Winter	100		100/15					13.183	0.588
S3.001	S.A8		Winter	100	+10%		Summer				13.163	1.138
s3.002	S.A9	15	Winter	100	+10%	30/15	Summer				13.093	1.268
S1.004	S.A10	15	Winter	100	+10%	30/15	Summer				12.514	1.101
S1.005	S.A11	15	Winter	100	+10%	30/15	Summer				12.024	0.932
S1.006	S.A12	15	Winter	100	+10%	30/15	Summer				10.946	0.686
S1.007	S.A13	240	Winter	100	+10%	1/15	Summer				10.461	0.458
S1.008	S.A14	240	Winter	100	+10%	30/60	Summer				10.455	0.554
S4.000	S.A15	15	Winter	100	+10%						11.245	-0.150
S4.001	S.A16	15	Summer	100	+10%						11.113	-0.116
S4.002	S.A17	15	Winter	100	+10%						10.958	-0.137
S4.003	S.A18	15	Winter	100	+10%						10.722	-0.073
S4.004	S.A19	15	Winter	100	+10%						10.560	-0.135
S4.005	S.A20	240	Winter	100	+10%	30/15	Summer				10.451	0.776
S1.009	S.A21	240	Winter	100	+10%	1/30	Winter				10.449	0.898
S1.010	S.A22	360	Summer	100	+10%						9.290	-0.080
S1.011	S.A23	720	Summer	100	+10%						9.197	-0.086
S1.012	S.A24	480	Winter	100	+10%						8.914	-0.085
S1.013	S.A25	600	Summer	100	+10%						8.708	-0.085
S1.014	S.A26	1440	Summer	100	+10%						8.476	-0.135
S1.015	S.A27	1440	Summer	100	+10%						7.157	-0.133
S1.016	S.A28	1440	Summer	100	+10%						6.537	-0.151

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 10
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Dialilade
Innovyze	Network 2020.1	

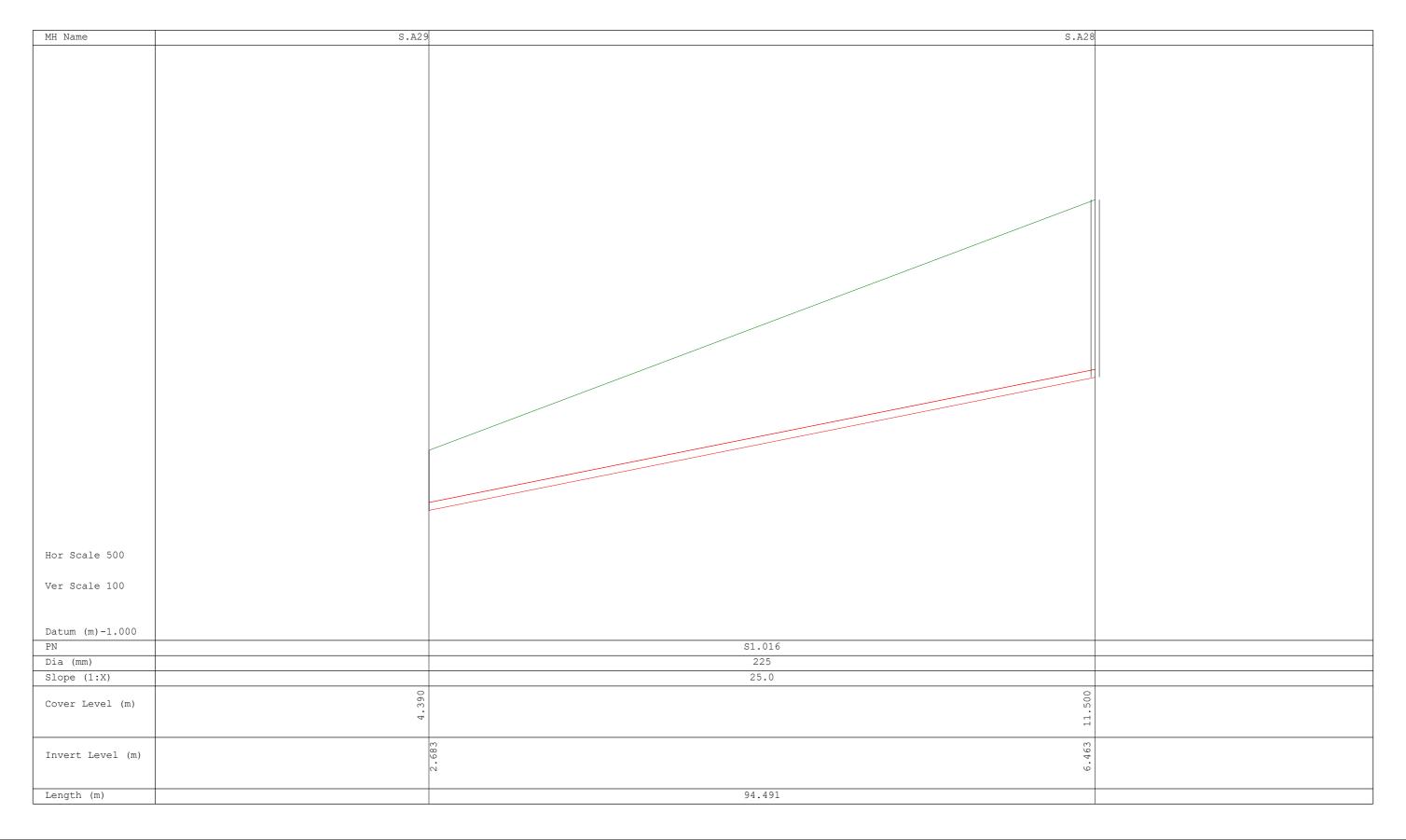
PN	US/MH Name	Flooded Volume (m³)	Flow /	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S.A1 S.A2	0.000	0.84	,,,,	, -,	41.7	SURCHARGED FLOOD RISK	
	S.A4	0.000	1.16 1.43			119.6	FLOOD RISK SURCHARGED	
\$1.002 \$1.003 \$3.000		0.000 0.000 0.000	1.84 0.91 0.25			120.4	SURCHARGED SURCHARGED SURCHARGED	
\$3.000 \$3.001 \$3.002	S.A8	0.000	0.69			23.9	FLOOD RISK	
S1.004 S1.005	S.A10	0.000	1.25 1.15			171.3	SURCHARGED SURCHARGED	
\$1.006 \$1.007	S.A13	0.000	1.43			77.4	SURCHARGED SURCHARGED	
S1.008 S4.000 S4.001	S.A15	0.000 0.000 0.000	0.54 0.24 0.47			11.2 18.3	SURCHARGED OK OK	
S4.002 S4.003	S.A17	0.000	0.33 0.77			24.4 27.8	OK OK	
S4.004 S4.005	S.A20	0.000	0.33				OK SURCHARGED	
S1.009 S1.010 S1.011	S.A22	0.000 0.000 0.000	0.69 0.74 0.70		188	24.5 24.5 24.5	SURCHARGED OK OK	
\$1.011 \$1.012 \$1.013	S.A24	0.000	0.70			24.5	OK OK	
S1.014 S1.015	S.A26	0.000	0.34			24.5	OK OK	
S1.016	S.A28	0.000	0.24			24.5	OK	

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	S.A11	S.A10	S.A6	S.A5	S.A	4 S.A1	
THI INGILIC	S.AII	3.AIU	5.A0	S.AJ	5.44	5.A1	
							I
						4.001	
			.002				
			1000				
Hor Scale 500							
Ver Scale 100							
Datum (m) 4.000							
PN PN		\$1.004	S1.003	\$1.002	S1.001	S1.000	
Dia (mm)		300	300	300	300	225	
Slope (1:X)		46.0	60.3	151.1	149.8	100.0	
010PC (1.V)							
Cover Level (m)	12.840	13.400	14.500	14.600	14.340	14. 2.60	
\/	2	, m	4,	4	4.	4.	
	H				⊣	-	
		0 0 0	2 0	0 1	1 7	0	
Invert Level (m)		10.792	11.068	11.680	11.984	12.319	
			1 1				
To so sub-lay (see)							
Length (m)		14.780	34.183	9.219	36.395	51.087	

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	S.A23	S.A22	S.A21		S.A14 S.A1	3 S.A12	S.A11	
rii wane	0.1123	0.1122	0.1121		0.111	5 5.1112	0.7711	
				4.005				
or Scale 500								
er Scale 100								
)2+11m (m) 2 000								
Oatum (m) 3.000		1.010	\$1.009	\$1.008	\$1.007	7 S1.006	\$1.005	
Dia (mm)		225	225	51.008	300	300	300	
Slope (1:X)		196.4	190.7	895.0	56.2		42.5	
TODE (T.V)								
over Level (m)	006	006	000		006	750	840	
	11.900	H	12.000		H H		12.	
nvert Level (m)	9.058	9.145	. 9.326	326	9.376 9.601	9.960	200	
TIVETO DEVET (III)	<u>.</u>	0 0 1 .	. o	o	0 0 0		. 01	
			-				1	
l l				44.748				

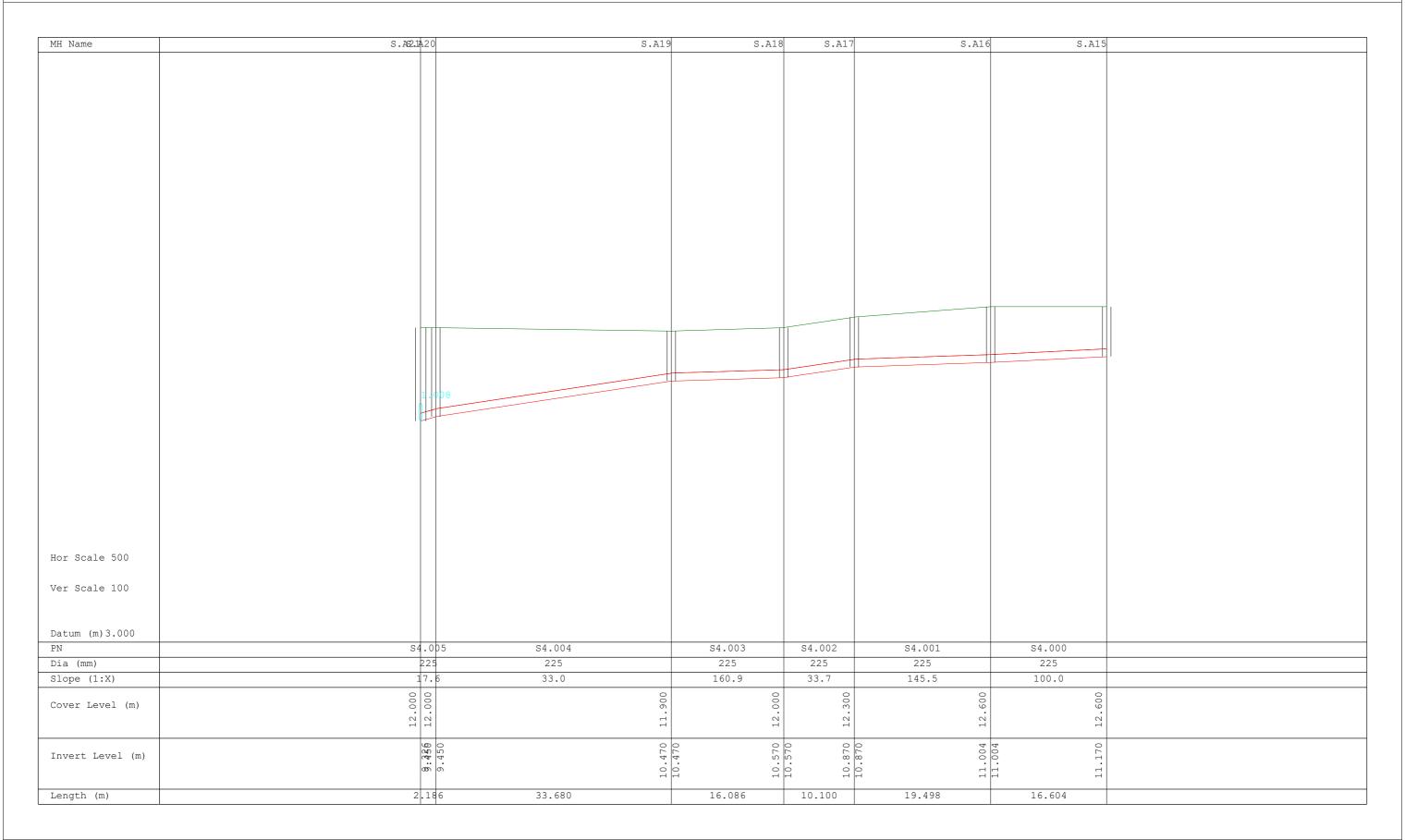

J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilacie
Innovyze	Network 2020.1	•

MH Name	S.A26	S.A25	S.A24	1 S.A2	23
					\exists
					+1
Hor Scale 500					
101 50410 500					
Ver Scale 100					
.01 50010 100					
Datum (m) 2.000					
PN		\$1.013	\$1.012	\$1.011	
Dia (mm)		225	225	225	
Slope (1:X)		199.7	199.8	202.0	
21000 (1.11)					
Cover Level (m)	11.600	11.900	12.400		000
	1.	[-		_	
Invert Level (m)		8.386	8.5568	Γ. 0	000
THACT TGAGT (M)		(n)			
		- W			
Length (m)		36.345	41.156	57.377	
				1	

J.B. Barry & Partners Ltd		Page 4
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Thhoware	Network 2020 1	

MH Name	S.A28	S.A27	S.A26	
	5.1120	5.1127	5.1120	
Hor Scale 500				
Ver Scale 100				
Datum (m)1.000				
PN		S1.015	\$1.014	
Dia (mm)		225	225	
Slope (1:X)		49.7	48.0	
	0			
Cover Level (m)	11.500	.100	00	
	11	1 2	11	
Invert Level (m)		6.463	7.065	
	ļ	. 6	<u> </u>	
Length (m)		29.911	63.431	

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020 1	·


J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	S.A4	S.A3	S.A2	
	5111			
	ıl			
		.000		
	I -			
Hor Scale 500				
Ver Scale 100				
Datum (m) 5.000				
PN		S2.001	S2.000	
Dia (mm)		225	225	
Slope (1:X)		102.7	100.1	
	0			
Cover Level (m)	14.340	14.100	14.100	
	4	1.4	1.4	
	c	Ü	0	
Invert Level (m)	c 	12.361	12.361	
	c r	1 2	1 2 1 2	
Length (m)		31.021	30.932	
5- (-)				

J.B. Barry & Partners Ltd		Page 7
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020.1	

MH Name	S.A10	S.A9	S.A8	S.A7	
	1				
		003			
	<u> </u>	.005			
Hor Scale 500					
101 56416 500					
Ver Scale 100					
Datum (m) 4.000					
PN PN		S3.002	\$3.001	S3.000	
Dia (mm)		225	225	225	
Slope (1:X)		162.9	198.0	55.9	
Cover Level (m)	. 400	.300	13.230	13.800	
	13.	13	[3	[3 8.	
Invert Level (m)	T	11.600	11.600	12.370	
	,	111 121	111	12 .	
Length (m)		67.106	39.599	31.863	

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Designation
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialilade
Innovyze	Network 2020.1	

ATTENUATION ESTIMATES, STORAGE TANK SIZING

CATCHMENT A

PROJECT: **Bessborough SHD Development**

DESCRIPTION: 21207-JBB-PH1-XX-CA-C-04401_Attenuation_Assessment_A_(Phase_1)

DATE: 17/02/2022 SHEET 100 Year +10%

Sheet 1

Catchment Characteristics

Site Area <mark>0.480</mark> ha 1106 mm SAAR Soil Category SOIL = M5-60 <mark>16.3</mark> mm 76.6 mm M5-2D r = M5-60 / M5-2d = 0.21

Permissible flow (Q100) = **7.72** l/s

Developent Area = 0.480 ha Impervious Area = 0.480 ha

								-
Rainfall	Rainfall	Including CCF	Total volume	Average	Permsble	Flow to	Storage	
duration	depth (R100)	(R100)*1.1	of runoff	flow	Flow	be stored	Volume	
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	
0.25	16.1	17.7	85.01	0.094	0.0077	0.087	78	
0.5	21.6	23.8	114.05	0.063	0.0077	0.056	100	
1	28.9	31.8	152.59	0.042	0.0077	0.035	125	
2	38.7	42.6	204.34	0.028	0.0077	0.021	149	
4	51.8	57.0	273.50	0.019	0.0077	0.011	162	
6	61.5	67.7	324.72	0.015	0.0077	0.007	158	
12	82.3	90.5	434.54	0.010	0.0077	0.002	101	
24	110.3	121.3	582.38	0.007	0.0077	-0.001	-84]
48	128.3	141.1	677.42	0.004	0.0077	-0.004	-656	1
Required Volui	me = Maxum o	f storage volum	e, V100 =				162	m
						•		-

Total attenuation storage required (m3) =

162

_m3

CATCHMENT B

PROJECT: Bessborough SHD Development

DESCRIPTION: 21207-JBB-PH1-XX-CA-C-04403_Attenuation_Assessment_B_(Phase_1)

DATE: 17/02/2022 SHEET 100 Year +10%

Sheet 1

Catchment Characteristics

Site Area SAAR Soil Category 4 M5-60 M5-2D

SOIL =

1.050 ha 1106 mm **0.47** 16.3 mm

76.6 mm

r = M5-60 / M5-2d =

Permissible flow (Q100) = 16.88 l/s

Developent Area = 1.050 ha Impervious Area = 1.050 ha

Rainfall	Rainfall	Including CCF	Total volume	Average	Permsble	Flow to	Storage
duration	depth (R100)	(R100)*1.1	of runoff	flow	Flow	be stored	Volume
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3
0.25	16.1	17.7	185.96	0.207	0.0169	0.190	171
0.5	21.6	23.8	249.48	0.139	0.0169	0.122	219
1	28.9	31.8	333.80	0.093	0.0169	0.076	273
2	38.7	42.6	446.99	0.062	0.0169	0.045	325
4	51.8	57.0	598.29	0.042	0.0169	0.025	355
6	61.5	67.7	710.33	0.033	0.0169	0.016	346
12	82.3	90.5	950.57	0.022	0.0169	0.005	221
24	110.3	121.3	1273.97	0.015	0.0169	-0.002	-185
48	128.3	141.1	1481.87	0.009	0.0169	-0.008	-1435
Required Volur	ne = Maxum o	f storage volum	e, V100 =				355

Total attenuation storage required (m3) =

355 r

_m3

STORMTECH Stormwater Management System Design Tool

ver: Aug15

PROJECT REF:

LOCATION:

Bessborough SHD Development

Bessborough, Blackrock, Cork

17-Feb-22

CREATED BY:

DOB

SYSTEM PARAMETERS

Required Total Storage	355 m
Stormtech chamber model	MC3500
Filtration Permeable Geo or Impermeable Geo	Filter geo
Number of Isolator Rows (IR)	1

SITE PARAMETERS

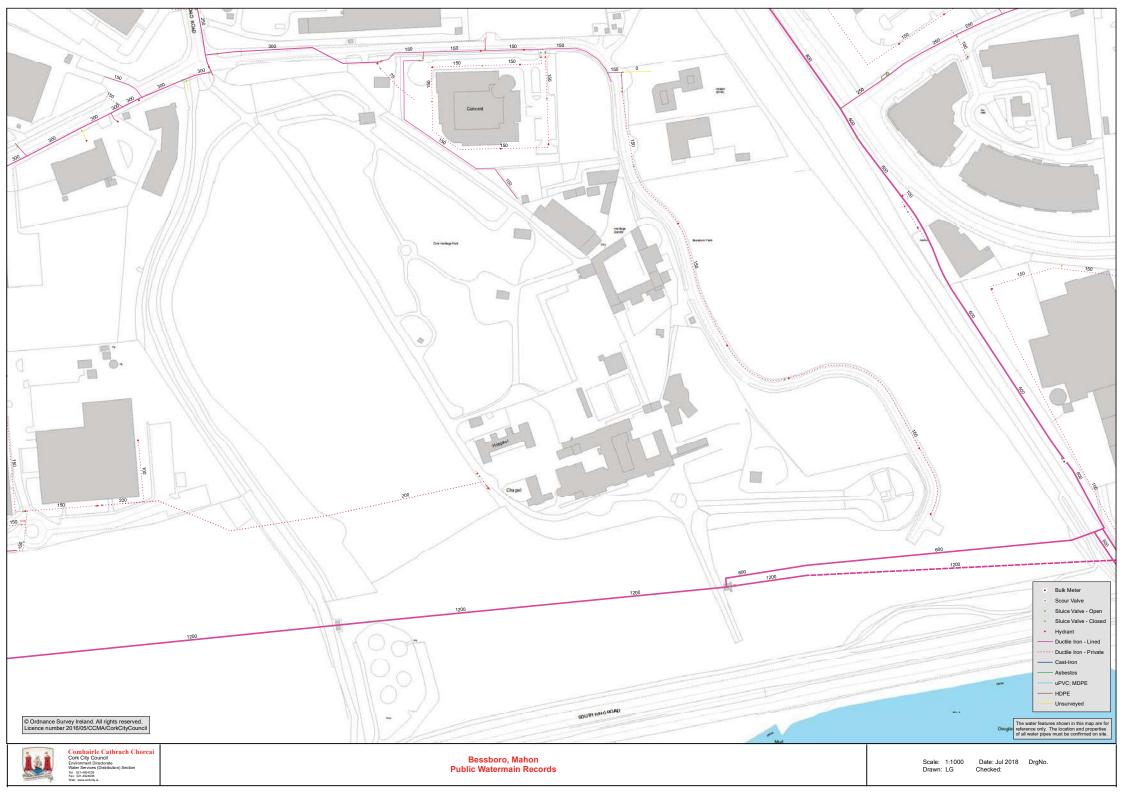
Stone Porosity	43%	
Excavation Batter Angle (degrees)	60 °	Minimum Requirement
Stone Above Chambers	0.3 m	0.30
Stone Below Chambers	0.26 m	0.23
In-between Row Spacing	0.23 m	0.23
Additional Storage outside Excavation. E.g manholes, Header Pipe	0 m ³	

HEADER PIPE

Is Header pipe required within excavation	No	
Orientation of Header Pipe	Parrallel to IR	
Diameter of Header Pipe	0.6	m
Length of Header Pipe	0	m

CHAMBER SYSTEM DIMENSIONS	Calculated	Adopted
Number of Rows		3 ea
Number of units per Row		19 ea
System Installed Storage Depth (effective storage depth)	1.705	m
Tank overall installed Width at base	6.93	6.93 m
Tank overall installed Length at Base	43.16	43.16 m
Total Effective System Storage	359.7	359.7 m ³

STORMTECH SYSTEM DETAIL


StormTech Chamber Model	MC3500	l
Unit Width	1.955	m
Unit Length	2.18	m
Unit Height	1.145	m
Min Cover Over System	0.3	m
Max Cover Over Chamber	2.4	m
Chamber Internal Storage Vol.	3.11	m^3
Header Pipe Internal Storage Vol in Excavation	0.0	m^3

STONE AND EXCAVATION DETAIL

Volume of Dig for System	597	m^3
Width at base	6.93	m
Width at top	8.89	m
Length at base	43.16	m
Length at top	45.13	m
Depth Of System	1.71	m
Area of Dig at Base of System	299	m ²
Area of Dig at Top of System	401	m^2
Void Ratio	60%	
Stone Requirement - m3	415	m^3
Stone Requirement - tonne	681	tonne

CORK CITY COUNCIL - EXISTING WATERMAIN RECORDS

